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Preface

A shorter version of this study has been published in the Journal of Geophys-
ical Research, July 1, 1985, Vol. 90, pp. 6251-6266 (AFGL-TR-85-0176). The
tables of events omitted from the JGR paper have been included in this report. We
thank R. E. McGuire for providing proton data plots and S. W. Kahler and M. A.
Shea for critical readings of the manuscript. We are grateful to A. Novak for
typing and editing assistance.

—_—
Accesion For N
NTIS CRA&I )
DTIC TAB
unannounced a
Justitication S
BY e .
Dizt. ibution ] )
—.—‘-““ .
. L Avai\z?\bm.ty C?des
g \ et/ Avail adfor
: ANE pist |  Spucial
)

-t

FAY

2

iii

LA

7

T,

e
L T e A AT AT AT AT L L
"-f:: l*(:}‘-..f.‘_}l'c‘:-dq". P S )

.



1. INTRODUCTION

2. RADIO AND PROTON DATA (1965-1979)

NN NN N
N W

2.6
2.7

Radio Data Sources

Selection Criteria

Constructing Spectra

Spectral Classes

Associated Sweep Frequency Meter Wavelength
Events

Proton Data

Major Proton Events, 1965-1978

3. DATA ANALYSIS

W w
o W N

Peak-Flux-Density Spectral Type vs Proton Events
The U-Burst as a Forecast Tool

Radio Signatures of Major Proton Events
Microwave Spectral Class and Type II/IV Bursts
Timing of Type II Burst and 200-MHz Peak

4. DISCUSSION

4.1 Summary

4.2 The U-Burst as a Prediction Tool

4.3 The Low Frequency Branch of the U-Shaped Spectrum

4.4 U-Bursts and the Big Flare Syndrome

4.5 Impulsive Phase Proton Acceleration

4.6 Proton Flares With Weak 200-MHz Emission
REFERENCES

iv

Contents

R R R

N
S



N
:: lllustrations
)

1. Examples of the Classic U~Shaped Spectrum, With the

5 Low Frequency Maximum Occurring Near 200 MHz 17
% 2. Examples of the Classic U-Shaped Spectrum With the
o Low Frequency Maximum Occurring Near 200 MHz 18

3. Examples of U-Shaped Peak-Flux-Density Spectra That
Had Their Lower Frequency Maximum in the Deci-
metric Range 19

-
r)

_ 4. Examples of U-Shaped Peak-Flux-Density Spectra That
] Had Their Lower Frequency Maximum in the Deci-
o metric Range 20
;g 5. Four of the Ten Events in Table 1 That Were Classified
‘ as U-Bursts Because of Our Decision to Favor High
Flux Values at 200 MHz 21
o 6. The Timing of the Maximum ~ 200-MHz Emission for the
) U-Bursts in Table 1 Relative to the Timing of the
,}. ~ 10-GHz Maximum 22
Z' 7. Examples of Microwave Bursts With What We Have
g:‘ Termed "Intermediate" Peak-Flux-Density Spectra 25
L § 8. Examples of Large Microwave Bursts With Cutoff or
¥ Quasi-Cutoff Spectra 26
W
i‘,t 9. Examples of Large Microwave Bursts With Cutoff or
& Quasi-Cutoff Spectra 27
o
10. Histograms of the Longitudinal Distributions of the He
¢ Flares Associated With the Large Microwave Bursts
in Table 1 Distributed According to Spectral Classi-
sadl fication: (a) U-Shaped, (b) Intermediate, and {c} Cut-
) off 35
W 11. Histogram of the Reported Peak-Flux Density at ~ 200
3 MHz for the Parent Flares of the Large [J (> 10 MeV)
‘.’ = 10 pr cm -2 gec-1 sr'1] Prompt Proton Events in
‘M Table 2 That Were Observed From 1965 to 1979 317
- 12. Histograms of the Durations of (a) Type II and (b) Type
’ IV Emission for the Largest [J (> 10 MeV) = 10 pr
,| cm~2 sec~l sr-1) Disk Flare (85°E = ¢ < 85°W)
S Associated Prompt Proton Events That Occurred From
0 1965 to 1979 40
B
(
»‘: ]
%
A
L.
¥
Y
!.'
4
Y
l::'
i
l'.
A
b:u v

T Y_X,

IS ! o0 CAT O ASANE IR 00 L G e b GBI s 1\
-z'f'l:“l."h‘,. ¥ ' 'a"'«‘ [ A e‘ 't. 'o.«‘o l."c ..Ht X :O XN "}" \%} A *3"‘ , -\ } . h\“\ -"* " 1‘:';‘. l" “‘ .S&"Q. ! Ne"l )



:e" & Y
B v
.'=‘,i_ g,
o, 't
8. R,
Bad 33
Lt e
& Tables 0%
‘! e ¥
s, (R
e 1. Large Microwave Bursts 1965-1979: Peak-Flux-Density 4N
ol Spectra, and Sweep Frequency Burst and Proton Asso- R
" ciation 8 A :
E's 2. Large Proton Events 1965-1979 With Unambiguous At
W Visible-Disk-Flare Associations 31 3
'.? 3. Peak-Flux-Density Spectral Class vs Proton Event Size 33 .
,! 4. Association of Sweep Frequency Bursts and Proton ‘:"
,8;\,’ Events With Peak-Flux-Density Spectral Classes 41 ;’,
15‘; ? v
e S
3 5
t:;*.t Pyt
t'g ;\L 0
A‘.'. '|.
Ay e,
w" L,
’La" 'D.'
R W
AN MRY
) o
39 :at'
pa R
i t .g#
Yy Lo
J ' '( ."
\ bt [ N‘i
3 \}' S%
B\3 )
o ‘:‘hk
J
. (MK}
.\3.:‘ 4 ¥, :
s :
t.‘ WA
«’Q:: Aty
\t‘l. . t.l'
g '! ¢
gl Wiy
i Y,
Tl Sy
i i
B ' .i'
g ANt
Ty AG% ¢
el e
.
L 8y
% Bty
A3 -‘(‘t \}
19 A\ ¥
S ) -“.\
:-""t "L\.
'1‘_ vi vt
i R
i e
\%t. '..A,
e L)
o3k, A
hl" Fa
] (=X
&

Sud

'i L3 ‘} v CAAY PR MR et e E S RS B LN SN L I N I T I N R S

W WO (X oh ' > L. ALY P PRy R ALK OO T, o<

NI Y Dotk RGN PO Y 2 R 2 AN 2 AT AT N
U RSN ARSI S e L A G R R e e S LT NNy, ..

2 U 8 SR B LB RV Y,



“at s
e e
K 2 -

oty

0 : %
,;5:. Peak-Flux-Density Spectra of Large Solar ",
:;". Radio Bursts and Proton Emission From Flares X
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% ! 1. INTRODUCTION !
; <.$ Castelli et all proposed that the "'U-shaped' peak-flux-density radio spectrum, %
g with high flux densities [ > 1000 solar flux units (1 sfu = 10722 W m™2 Hz"1)] at A
us meter and centimeter wavelengths and a minimum in the decimeter range, is the i
a3 "preferred spectrum' for major solar proton flares. This concept was investi- '~
':5 gated in a series of papers by Castelli and his co-workers. 2-6 In the initial re- H:
:’g + ports on this topic, ’“ evidence was presented indicating that the U-shaped spec- e
\ trum was a necessary or almost-necessary condition for a solar flare to produce .
ey a polar cap absorption (PCA) event. Thus, Castelli et a.l1 found U-shaped radio 0
S spectra for the three visible hemisphere PCA flares of 1966. W
oy )
,;«. In a verification of the utility of the U-shaped spectrum, O'Brien3 compiled a . :
13 comprehensive list of 30 microwave events with this spectral shape (U-bursts) Q :-’
L] Y
(- = from observations reported by Sagamore Hill, Manila, Nagoya, and Pennsylvania A
.":; 4 State University from 1966 to 1968. He associated 13 of these flare-bursts with \
.:Q principal (= 2.0 dB of absorption measured by a 30-MHz riometer) PCA events "
:::’ and 14 with minor ( < 2.0 dB) PCAs or with proton events detected only by satel- :"
s, :
4 'QZ lites, but was unable to associate the three remaining U-bursts with a near-Earth '::'ﬂ
it L4
R} . | —— .'.;
: l' (Received for Publication 12 August 1985) ;;;
»:, % References 1 to 6 will not be listed here. See References, page 50. ’:‘,
B0 3
I\ )
l“ '} 1 -
k-3 ¢
’q A '.--,
iyt 3
8 N
Savd A%
aah R
‘g'!’ 3 1
Jgad] M
veo :
'!..1 ’ .,’\ _‘-_(.\ - )



8l

Vo

i

LA

R

?"w particle enhancement. Significantly, in the reverse association, O'Brien found no
‘ cases of principal PCAs during this period that were not associated with U-bursts.

-‘:q.i‘ Castelli and Barron5 compiled a comprehensive list of 81 U-bursts from 1966 to

: i 1976. For nine of these events, a major proton event (PCA) was in progress at

:{ .. the time of the U-burst and no fresh injection of protons was observed. Seventy of

‘,g" the remaining 72 events were associated either with PCAs (27 of which had peak

v ) absorption = 2.0 dB) or satellite proton events. For the same period, 1966 to

:::' s 1976, Castelli and T:a.rnstrom6 published a catalog of 114 proton events that were
:::: associated with flares that did not have U-shaped microwave spectra. Seventy-six

R&. of these events could be identified with visible hemisphere flares, and, of these,
‘ga!,‘ only three were principal PCA events. Thus the current picture of the relation-

ship between U-bursts and proton events is that the U-shaped spectrum is: (1) an

*.; almost sufficient condition (70/72 = 97 percent) for the occurrence of an inter-

;:‘ 0 planetary proton event of any size, and (2) an almost necessary condition (27/30 =

,,: ¥ 90 percent) for a principal PCA ( = 2.0 dB) to occur.

;:. d: Largely as a result of the efforts of Castelli and his colleagues, the presence/

T absence of a U-shaped spectrum is used as a ''yes or no" indicator of significant
T} proton acceleration in solar flare-bursts at the U. S. space forecasting centers in

‘} ' Boulder and Omaha.'l'9 Moreover, the successful application of the U, coupled

-7;*?; with the ability to view the sun through clouds at radio wavelengths, was a signifi-

A’{ cant factor in the evolution of the worldwide solar radio patrol of the USAF10 and
- the establishment of the present day Radio Solar Telescope Network (RSTN)11 that
% monitors solar emissions in the frequency range from 245 MHz to 15.4 GHz.

W Despite the use of the U-shaped spectrum as a forecasting aid, however, cer-
3 tain questions about its development, pragmatic application, and physical interpre-

; . tation remain unanswered. Kahler and Simnett (1980, private communications)
é’)‘: 7. Heckman, G. (1979) Predictions of the space environment services center, in
A Solar Terrestrial Predictions Proceedings, vol. 1, p. 322, R. F. Donnelly,

ﬂ’ , Ed., National Oceanic and Atmospheric Administration, Boulder, Colo.

8. Cliver, E. W., Secan, J. A., Beard, E. D., and Manley, J. A. (1978) Pre-
diction of solar proton events at the Air Force Global Weather Central's
space environmental forecasting facility, in Effect of the lonosphere on
Space and Terrestrial Systems, Conf. Proc., J. M. Goodman, Ed., U. S.
Government Printing Office, Washington, D. C.

9. Thompson, R. L., and Secan, J. A. (1979) Geophysical forecasting at AFGWC,
in Solar Terrestrial Predictions Proceedings, vol. 1, p. 350, R. F.
Donnelly, Ed., National Oceanic and Atmospheric Administration, Boulder,

Colo.
_ 10. Castelli, J. P., Aarons, J., Guidice, D. A., and Straka, R. M. (1973) The
. solar radio patrol network of the USAF and its application, Proc. IEEE :
61:1307. oo

X 11. Guidice, D. A., Cliver, E. W., Barron, W. R., and Kahler, 5. (1981) The e

:: Air Force RSTN system, Bull. AAS 13:553. c )
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pointed out that certain events in Castelli ard Barron's list of 81 events did not
appear to satisfy the stated definition of a U-burst, while other events whose peak-
flux-density spectra conformed to the definition were omitted. A preliminary in-
spection of the data compiled in Solar Geophysical Da.i:a12 and the Quarterly Bulle-

tin of Solar Activity13 confirmed these apparent discrepancies and revealed others.

Some of the difficulty lies in the definition of the U-shaped spectrum as stated by
Castelli and Barron. 5

The criteria ... were that the flux density of the radio burst at time of

maximum have a spectrum resembling a "U" where (1) flux density is

rising in the short wavelength direction and is X 1000 [ sfu] in the X ~

3 cm range, (2) flux density in the decimeter range passes through an

emission minimum, and (3) flux density in the long-meter-wavelength

direction rises again to values 2 1000 [ sfu].
A shortcoming of this definition is that it contains no mention of the allowable sep-~
aration in time between peaks at different frequencies. For certain events in
Castelli and Barron's (CB) list (Nos. 6, 17, 22, and 61), the low frequency maxi-
mum occurs from 10 to 50 min after the ~10-GHz peak. In two of these events
(Nos. 17 and 61), the ~ 200-MHz emission did not begin until = 15 min after the
centimeter wavelength maximum. Constructing peak-flux-density spectra from
discrete frequency peaks separated by tens of minutes strains the credibility of
the U as a forecast tool (and as a meaningful physical construct), since, given
enough time and the relative high frequency of bursts at the longer wavelengths,
unrelated microwave and meter wavelength bursts might be combined to give U-
shaped spectra. For other events on CB's list, the desired result, association of
U-bursts with principal PCA events, was assumed. For the 02 December 1968
event (No. 25), observations were not available above 2700 MHz (Penticton, 270
sfu), but O'Brien, by applying the average spectral index in the 3- to 9-GHz range
for radio bursts associated with principal PCAs deduced that the U-shaped criteria
would have been satisfied for this event had observations been available at 9 GHz.
For the 02 November 1969 event (No. 36) associated with a flare . 10° behind the
western limb, the highest flux value reported at frequencies < 1 GHz was 300 sfu
(Moscow, 204 MHz). Castelli and Guidice !4
event occurred on the visible disk, a high flux, presumably 2 1000 sfu, would have

make the assumption that had this

12. Solar Geophysical Data, National Oceanic and Atmospheric Administration,
Boulder, Colo.

13. Quarterly Bulletin of Solar Activity, International Astronomical Union,
Eidgen. Sternwarte, Zurich.

14. Castelli, J. P., and Guidice, D. A. (1972b) The radio event associated with
the polar cap absorption event of 2 November 1969, in Proc. of COSPAR
Symposium on Particle Event of November 1969, p. 27, J. C. Ulwick, Ed.,
AFCRL-72-0474, AD 763081.
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?ﬁ ~. been recorded at the longer wavelengths, giving a U-shaped spectrum for this
S event in accordance with the stated criteria. There are other difficulties with the
;,;g;, CB list. The U-burst on 24 May 1972 had low frequency emission 2 1000 sfu only
,:::" at f ~ 100 MHz, but it is included in CB's list (No. 55) despite stza.tements4 10 that
:::é‘; the U-shaped signature for proton events applies only to the spectral range from
f:'h 200 MHz to ~ 10 GHz. Finally, for the 01 November 1968 (No. 20) and 06 May
Y 1969 (No. 34) events, the highest flux densities reported at f < 1000 MHz are

,i;?‘ 400 sfu and 325 sfu, respectively. While the appropriateness of the inclusion of

:! n the above-mentioned events on the U-burst list of Castelli and Barron is debatable,
N other events that satisfied the U-shaped spectral criteria were omitted from the
-z: : list. Well-defined examples of such events occurred on 04 September 1966

(0417 UT), 04 March 1967 (1716 UT), 21 March 1969 (1334 UT), 14 January 1971

(1122 UT), and 06 March 1972 (1116 UT).

% o From our perspective, a more fundamental question than the classification of
'3:"': individual events in previous studies of U-shaped spectra and proton events con-
E::: . cerns the basic methodology of these studies. Despite the considerable effort that
2 has been expended on investigations of the U-burst/proton event relationship, no

K systematic study has been undertaken to classify the peak-flux-density spectra of
1 large solar bursts into different types and then to compare the proton association
') of non-U types with that of the U-bursts. Thus at present, we know neither the
‘.\\-*’.' approximate fraction of large radio bursts that have U-shaped spectra, nor the

e degree of association between large bursts with non-U spectra and proton events.
AN Until these questions are addressed, it is difficult to assess the value of the U as
B . i s . . e s .
:r}-,_ a yes or no forecast tool since it is not known how well it discriminates against
{ {_:: large microwave bursts of different spectral type.
: ‘{ Finally, questions about the physical interpretation of the U-shaped peak-flux-

density spectrum have persisted since its introduction. In the original papers,
little attempt was made to provide an explanation for the observed association be-
tween U-bursts and proton events. Subsequently, Castelli and Guidice4 interpreted
this relationship in terms of a two-stage acceleration process. In their model,
flash phase electrons accelerated downward toward the solar surface (or trapped
on low -lying loops) give rise to the centimeter wavelength branch of the U. The
intensity of the microwave peak (2 1000 sfu in U-bursts) served as an indicator
that the energy release during the impulsive phase was sufficient to produce a
coronal shock wave (inferred from a Type II burst) through which the electrons
accounting for the meter wavelength branch of the U and the protons observed at
Earth were accelerated via a Fermi-type process. The idea of two phases of par-
ticle acceleration in flares was proposed by Wild et 9.115 and de Jager. The

References 15 and 16 will not be listed here. See References, page 50.

« N
Y SRN T s

A G S N N T R SR R Y O PO RS



picture suggested by Castelli and Guidice for the relationship between the two stages
is in qualitative agreement with the detailed model of Lin and Hudson.17 However,
18,19 1 ave shown that significant [J (> 10 MeV) = 10 pr em 2gec!

sr-l] proton events can be associated with relatively small [Sp (~9 GHz) < 100 sfu)

since Cliver et al

microwave bursts, as was also indicated by Castelli and Tarnstrom, the explana-
tion of the U-burst/proton relationship proposed by Castelli and Guidice is problem -
atical. Nevertheless, Lin20 and Svestka and Fritzova-Svestkova21 have noted an
association between Type Il bursts and interplanetary proton events, and it would be
interesting to see if large flare bursts with the U-shaped spectrum are preferen-
tially associated with Type IIs in comparison with large non-U-bursts. Without
such additional evidence for a physical link between U-bursts and proton events, the
inclination is to dismiss the U-burst/proton event association as an example of the
Big Flare Sym:lrome,22 perhaps useful for forecasting purposes but incapable of
providing insights on the problem of proton acceleration in flares. In essence, the
Big Flare Syndrome states that a flare that is prominent in one energy or wave-
length tends to be prominent in all, and cautions about over-interpreting associa-
tions/ correlations observed in samples of big flares.

In this study we classify the peak-flux-density spectra of all large radio bursts
{Sp (=2 GHz) = 800 sfu| observed from 1965 to 1979 and compare the associations
of bursts of different spectral classes with interplanetary proton events and Type
II/IV bursts. In addition, we examine the nature of the low frequency branch of the
U-shaped spectrum and conduct a search for necessary conditions in the radio do-
main for the occurrence of a significant [J (> 10 MeV) = 10 pr cm’2 secu1 sr-lj
proton event.

In the next section, we discuss our data sources, event selection criteria, and
burst classification procedures and present the list of events to be analyzed. The
various statistical associations are presented in the following section, and a sum-

mary and discussion of results are contained in the final section.

17. Lin, R. P. and Hudson, H. S. (1976) Non-thermal processes in large solar

fulipiinnd  Sesiupppeia

18. Cliver, E. W., Kahler, S. W., Cane, H. V., Koomen, M. J., Michels,
D. J., Howard, R. A., and Sheeley, Jr., N. R. (1983b) The GLE-asso-
ciated flarc of 21 August, 1979, Sol. Phys. 89:181.

19. Cliver, E. W., Kahler, S. W., and McIntosh, P. S. (1983c) Solar proton
flares with weak impulsive phases, Astrophys. J. 264:699.
20. Lin, R. P. (1970) The emission and propagation of 40 keV solar flare elec-

trons. I: the relationship of 40 keV electron to energetic proton and rela-
tivistic electron emission by the sun, Sol. Phys. }3_:266.

21. Svestka, Z., and Fritzova-Svestkova, L. (1974) Type II radio bursts and
particle acceleration, Sol. Phys. 36:417.

22. Kahler, S. W. (1982a) The role of the big flare syndrome in correlations of
solar energetic proton fluxes and microwave burst parameters, J. Geophys.
Res. 87:3439.
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js‘? 2. RADIO AND PROTON DATA (1965-1979) _::
;‘: By 1965, near the start of the 20th solar cycle, radio and particle patrols of il
.:E the sun were reasonably complete. Radio coverage at a range of discrete frequen- : ;:
zg cies was provided principally by patrols at Gorky (USSR), Berlin - Adlershof/ :0
c::: Tremsdorf (DDR), Pennsylvania State University (USA), and Toyokawa/Hiraiso fg«}
"i‘\' (Japan). [Sagamore Hill (USA) began reporting in January 1966.] Solar particle yE
. .4 events in 1965 were monitored from szgace (e.g., IMP 2, IMP 3, PION 6) as well r
i as by ground-based polar riometers. The final year considered, 1979, was the ?'
: O last full year for which comprehensive radio, proton, and optical flare data were ::;:Ei
;E; available at the time we began the study. :‘::s
g
‘5:‘ 2.1 Radio Data Sources ;~ ;
:& For discrete frequency data we relied primarily on the Quarterly Bulletin of }I y
:5$ Solar Activity (QBSA) for events occurring before 1969 and Solar Geophysical Data 5.:
;.::! (SGD) for subsequent years. Since the QBSA did not always list all peak-flux- .'
density values/times when several stations reported observations at or near a e
'Q given frequency, it was necessary to supplement this data source with the burst e
‘ ": compilations from individual observatories such as Hiraiso, Toyokawa, Ondrejov, ;-
)’ . Gorky. and Slough. Also, for a few periods, data from certain observatories ’ !\‘
Y were not published in either QBSA or SGD and are only available in the individual "1
observatory reports. The two prominent examples of this that we noted were for ’
K9 Manila (1968) and Toyokawa (1978). [t is important to note that, for consistency, .\f_
: only tabulated data were used. Reference was not made to either published burst '\'
: profiles or to the Sagamore Hill strip chart data which we have archived for the :
W years 1966-1981, z
J
E;';:. 2.2 Selection Criteria ,‘:‘::::.
\ In our search for large microwave bursts occurring during this period, we ,$~ )
,:3;. used the following selection criteria: *‘m
‘:",', ":‘0::
£ (a) Sp = 800 sfu at f = 2 GHz, and
Fo: (b) 85°E = ¢ =< 85°W , o
.'*-'; o3
?_( where SP = peak radio flux density, and ¢ is the longitude of the associated He \\3:
f':- flare. We considered frequencies = 2 GHz since this frequency serves as a nom- \:;
'. inal divider between the decimetric wavelengths, where intense narrow band fea- 2
'.:‘0 tures often occur without significant associated microwave emission, and the @Y,
e 23. Bailey, D. K. (1964) Polar cap absorption, Planet. Space Sci. 12:495. :‘é
% )
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centimetric wavelengths, where spectral variations are typically smoother. 24

The =800-sfy level is roughly equivalent to Castelli and Barron's 2 1000-sfu

level. In our initial screening of the data we selected all events for which any
observatory reported a peak flux value = 800 sfu at any frequency = 2 GHz. We
then eliminated those events for which reported flux values = 800 sfu were not
supported by observations at the same or adjacent frequencies, when such obser-
vations were available. The solar longitude criterion was adopted to screen out
events occurring close to or beyond the limb for which the radio source may have
been partially occulted. The 193 events satisfying these selection criteria are
listed in Table 1. Event date, ~10-GHz maximum time, ~ 200-MHz maximum
time, and He flare location and classification are given in columns two through
six, respectively. The time of the 10-GHz maximum (200-MHz maximum) was
obtained by averaging the reported times at frequencies from 8.2 to 11. 8 GHz
(184 to 328 MHz). For event Nos. 14, 21, 30, 75, 76, 163, and 170, Ho flare
associations are questionable since two candidate optical events were in progress
at the time of the radio burst. The listed flare is, in our opinion, the more likely
source of the intense microwave emission.

2.3 Constructing Spectra

Several of the events in Table I had more than one reported peak in their
flux -density time profiles that satisfied our Sp ( = 2 GHz) = 800 sfu selection
criterion (e.g., two of the large bursts in the August 1972 sequence, Nos. 98
and 101). For such events, we constructed spectra at the time of the largest
peak at the highest frequency for which observations were reported. Since sec-
ondary (late) peaks in microwave outbursts tend to have their maxima at pro-
gressively lower frequencies, 25,26 this procedure was designed to select the
initial major peak in the listed events. While this tactic did not always, in fact,
identify the first reported centimeter wavelength peak = 800 sfu (e.g., Nos. 16
and 98), it did ensure a consistent approach to the data. We considered only
those lower frequency flux-density maxima that fell within a five-minute sliding
window containing the highest frequency/highest flux "anchor time'. No two dis-
crete frequency maxima that were used to determine the peak-flux-density spec-
trum could be separated in time by more than five minutes. The five-minute

24. Kundu, M. R. (1965) Solar Radio Astronomy, Interscience Publishers, New
York, New York.

25. Kai, K. (1968) Evolutional features of solar microwave type IV bursts, Pub.
Astron. Soc. Japan 20:140.

26. Kahler, S. W. (1982b) Radio burst characteristics of solar proton flares,
Astrophys. J. 261:710.
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width of the time window was arbitrarily chosen, and, while it may still be too
large to provide physically meaningful spectra, it is an improvement on the rela-
tively open-ended approach of Castelli and Barron. 5 In practice, as we shall
show, large microwave bursts often have their maxima at frequencies across the
spectrum occurring within 1 to 2 min.

The reported peak-flux-densities in the five-minute window were plotted as a
function of frequency on log-log graph paper (Figures 1 through 5 and 7 through 9).
We considered only frequencies = 200 MHz with the exception of Boulder (184
MHz). Generally the highest observed/reported frequencies were in the 10- to
20-GHz range, although observations at 35 GHz (Sagamore Hill and Nagoya) and
beyond (Slough) were available occasionally. Visual fits were made through the
plotted points for each event. At frequencies > 2 GHz, it was relatively easy to
construct a consensus peak-flux-density spectrum from the plotted points owing
both tn the smoother spectral and temporal variations at these frequencies and

22,217 inter -calibration

also to the reasonably good (10~ to 20-percent variations)
of the worldwide patrol. Below 2 GHz, and especially near 200 MHz, the situa-
tion becomes more difficult. The narrow band features in the decimeter range
present a particular problem since one cannot be sure whether an apparent pro-
nounced spectral variation is real or the result of an erroneous report by a single
observatory. The procedure we eventually adopted at decimeter wavelengths was
close to a ''connect the dots' approach, smoothing out minor variations that could
be due to calibration differences but following exactly large variations that we had
no reason to doubt. Examples of events with relatively narrow band decimetric
features in their spectra are given in Figures 3(b), 3(c), 4(b), 4(c), 7(b), 2(b),
and 9(c). Atf ~ 200 MHz peak-flux-densities reported by different stations ob-
serving at closely spaced frequencies can vary by a factor of 2 to 5 or more

[ Figures 2(a), 4(b), 4(d), 5(a)-5(d), and 7(a}}. It seems doubtful that variations
of this size could be due to faulty calibration since the difference would also ap-
pear in the daily measurement of the quiet-sun-flux. Rapid spectral variations in
the burst emission at these lower frequencies may play a role, although, for cer-
tain cases (e.g., Nos. 23, 93, 155), large discrepancies were noted in the re-
ported peak-flux~densities of observatories monitoring the ‘ame nominal frequen-
cies. We suggest that the significant differences often observed near 200 MHz
result from the effects of different time constants on bursts with fast time struc-
ture or fromn non-linear receiver response for large events. Since both of these

effects will tend to reduce observed peak-flux-densities (assuming one does not

27. Tanaka, H., Castelli, J. P., Covington, A. E., Kruger, A., Landecker,
T. L., and Tlamicha, A. (1973) Absolute calibration of solar radio flux
density in the microwave region, Sol. Phys. 208:243.
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over-correct for non-linearity), we favored the higher reported values in events
with widely divergent peak -flux-densities at 200 MHz. This decision affected the
spectral classifications of 12 events (Nos. 9, 19, 22, 32, 43, 50, 60, 90, 110,
111, 121, and 139) in Table 1.

While observatories may report the times/peak-flux-densities of several
maxima at a given frequency in a complex burst, this practice is by no means
standard and often only the largest peak is reported. This is a particular prob-
lem at the lower (< 1 GHz) frequencies where the largest peak may not occur
until late in the event. For certain events with insufficient spectral data at the
anchor time, however, it was possible to infer the spectral shape by using peak
fluxes reported later (or earlier) in the event as upper limits (Nos. 13, 29, 44,
78, 80, 82, 100, 135, 183, and 186). Also for two cases where a peak 200-MHz
flux was reported without a corresponding time (Nos. 6 and 11), we were able to
classify the microwave spectrum by assuming that the 200-MHz peak time was the
same as that of the peak at the next highest frequency reported (~ 600 MHz in
both cases).

For each event in Table 1, we have included a sufficient number of frequency/
peak-flux-density pairs to allow one to recreate the spectral curves that we ob-
tained by fitting the tabulated data. In columns 7 through 11, the peak-flux-den-
sities of our constructed spectra at f = 200 MHz, 500 MHz, 1 GHz, 3 GHz, and
10 GHz are listed. In columns 12 through 17, frequency/flux-density pairs for
the spectral minimum, maximum, and highest frequency reported are listed. If
the highest frequency for which observations were reported is less than 10 GHz,
the value in column 11 was obtained by extrapolation. For all but 19 cases, in-
dicated by an asterisk in column 17, the information in columns 7 through 17 is
sufficient to reconstruct the peak-flux-density spectrum with reasonable accuracy.
For the 19 events requiring further data, an additional frequency/peak-flux-den-
sity pair is given following the table. The additional data points were needed pri-
marily to describe rapid spectral variations in the decimetric range (300 MHz to
~ 2 GHz). Certain of the events exhibited apparent spectral minima at f = 10 GHz
[c.g., No. 45, Figure 4(a)]; these higher frequency variations are not covered by
the data in Table 1. The negative numbers appearing in place of peak-flux -density

values in columns 7 through 11 are defined as follows:

1l

-1 = a station is observing at this frequency but does not

report an event,

-2 = no station is observing,

-3 = uncertain value but > 100 sfu,
-4 = uncertain value but < 100 sfu,
-5 = uncertain value.
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2.4 Spectral Classes

Despite the occasional complexity that may present itself in the peak-flux-
density spectrum of any given event, we found that we were able to classify the
spectra of the events in Table 1 into two basic groups and an intermediate type.
The dominant spectral type was the U-shape, designated by a | in column 18, that
comprised 59 percent (113/193) of the sample. For a peak-flux-density spectrum
to be classified as U-shaped, we required:

(a) a spectral maximum = 300 sfu at some frequency f = 2 GHz,

(b) a second maximum = 300 sfu at some frequency ( = 200 MHz)

below that of (a), and

(¢) a spectral minimum at some frequency between that of the

maxima in (a) and (b) (but < 10 GHz) with a flux-density value

significantly ( = 40 percent) below those of (a) and (b).
The condition that the minimum occur at £ < 10 GHz excludes event No. 9928 that
has its only minimum at f ~ 15 GHz. This is consistent with the specification by
Castelli and Barron5 that the spectral minimum occur in the decimetric range.
Event No. 170 had the highest frequency spectral minimum (5 GHz) of the 113
events that satisfied these criteria. Event Nos. 61, 63, 134, and 187 only mar-
ginally met the = 40 percent minimum criterion and are lower-confidence U-
bursts.

The above definition allows a variety of spectra to be classified as U-shaped.
A number of examples of this spectral type are shown in Figures 1 through 5.
Figures 1 and 2 contain examples of the classic U-burst spectrum, with the low
frequency flux-density maximum occurring from ~ 200 to 500 MHz. Approxi-
mately 75 percent of the U-bursts in our sample had this type of spectrum; ~ 20
percent had their lower frequency maximum in the range from > 500 MHz to 2 GHz.
The spectrum in Figure 1(c) has emission maxima in both of these wavelength
ranges. Figures 3(a), 3(c), 3(d), and 4(a)-4(d) give seven of the fifteen cases of
U-bursts that had their low frequency peak at f > 1 GHz. The events in Figure 3
were on the list of Castelli and Barron5 while those in Figure 4 were not. Figure
5 contains four of the twelve events in our sample that were classified as U-bursts
because of our decision to favor high flux values at 200 MHz. Event No. 32
[ Figure 5(b)} was also on CB's list.

At this point it is of interest to compare our list of events with U-shaped
spectra to that of Castelli and Barron for the period in common from 1966 to 1976.
Of the 85 previously identified U-bursts during this period (81 from CB and four

28. Zirin, H., and Tanaka, K. (1973) The flares of August 1972, Sol. Phys.
32:173.
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added by Castelli and Tarnstrom, 6 11 occurred either at or behind the solar limb
(¢ > 85°) and were not considered for our list. For event No. 10 (02 November
1967, 0856 UT) on the CB list, no observatory on patrol reported an event with
Sp = 800 sfu [ Gorky, Sp (9.4 GHz) > 520 sfu]. For 14 other events on CB's list
(several of which were discussed in the introduction), we were either unable to
classify the peak-flux-density spectrum because of insufficient data in the five-
minute window (nine cases) or arrived at a different classification (five cases).
Thus there were 59 events in the intersection of our U-burst data sets for the
common years of these studies. In addition, we identified 25 events during this
period, not included on the U-burst list compiled by CB and Castelli and
Tarnstrom, that satisfied the U-shaped spectral criteria we adopted. We point
out that 13 of these 25 events (Nos. 3, 4, 19, 49, 50, 63, 66, 67, 71, 75, 105,
110, and 111) would not have been classified as U-bursts if spectral maxima =
1000 sfu (vs = 800 sfu) in the meter/decimeter and centimeter wavelength ranges
had been required. This would account for their absence from the CB list. (By
the same standard, event Nos. 5, 7, and 26 in Table 1 might be excluded from the
CB list.) The 12 events that appear to satisfy their criteria and are missing from
their list are Nos. 6, 12, 37, 45, 61, 83, 90, 94, 97, 107, 112, and 133.

Figure 6 is a histogram showing the timing of the flux-density peak at 200
MHz relative to that of the 10-GHz peak for the U-bursts in Table 1. Only cases
where reported maxima at both of these frequencies fell within the five-minute

L Ll A 3 \ | : L ¥ I 1 1
30}
200 MHZ % 200 MHZ |
MAXIMUM MAXIMUM
0 25 PRECEDES ; FOLLOWS
¥
§ 20} % .
w >
w 15 3 9
2 of ]
5| -
'
5 4 -3 2 - r 2 3 4 5
MINUTES MINUTES

10 GHZ MAXIMUM

Figure 6. The Timing of the Maximum ~ 200-MHz Emis-
sion for the U-Bursts in Table 1 Relative to the Tuming of
the ~ 10-GHz Maximum. For ~ 70 percent (70/102) of
the cases the peaks at these widely separated frequencies
occur within % 1.5 min of each other. The data are taken
from columns 3 and 4 in Table 1
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sliding window were considered. The histogram shows that intensity maxima at
these widely spaced frequencies often occur quite close in time, within * 1.5 min
for ~ 70 percent (70/102) of the cases.

For 52 of the 165 events in Table 1 for which we were able to determine
spectra, a = 800-sfu maximum at f = 2 GHz was not accompanied by a maximum
with Sp = 800 sfu at a lower frequency. In many cases the high frequency emis-
sion was apparently unaccompanied by any emission at lower frequencies and
emission would appear to taper smoothly down from the centimeter wavelength
maximum and cut off at frequencies 2 1 GHz. In other cases the spectrum was
U-shaped but the lower frequency maximum did not have Sp = 800 sfu. Still in
a few other cases the spectrum below the centimeter wavelength peak neither cut
off completely nor turned back up, but remained relatively flat at a given flux
density level. To distinguish between these various types of events we adopted
the following classification scheme. We classified as having intermediate peak-
flux-density spectra those events for which:

(a) a spectral maximum = 800 sfu occurred at f = 2 GHz,

(b) no significant (Sp = 800 sfu) spectral maximum occurred

at a frequency lower than that of (a) (down to 200 MHz), and

(c) Sp (200 MHz) = 100 sfu.

This set of criteria distinguishes these events from those having cutoff or quasi-
cutoff spectra for which criteria (a) and (b) also apply, but for which criterion
(c) becomes: Sp (200 MHz) < 100 sfu. Thus microwave bursts of the intermedi-
ate spectral class, designated by a 2 in column 18, have peak 200-MHz emission
between that of U-bursts and cutoff events (3 in column 18). We point out, how-
ever, that the occurrence of a decimeter wavelength peak with Sp = 800 sfu auto-
matically qualified an event as a U-burst in our classification scheme (assuming
it met the other stated criteria), regardless of the peak-flux-density of any re-
ported 200-MHz burst.

While for many of the events having cutoff spectra, emission appeared to be
cut off well above 200 MHz, we know from experience that, because of the rela-
tively high level of activity at the lower frequencies, many and perhaps a major-
ity of the smaller events (Sp < 100 sfu) at 200 MHz go unreported.zg Thus the
cutoff events are not necessarily those for which no low frequency emission was
observed, but rather are events for which the peak 200-MHz emission was sig-
nificantly down (a factor of eight or more) from its centimeter wavelength maxi-
mum. In all cases where no event was reported near 200 MHz (184 to 328 MHz),

29. Roelof, E. C., Dodson, H. W., and Hedeman, E. R. (1983) Dependence of
radio emission in large Ho flares 1967 - 1970 upon the orientation of the
local solar magnzatic field, Sol. Phys. 92:339.
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we checked the published patrol times to see if a station (e.g., Hiraiso, Gorky,
Sagamore Hill) was, in fact, observing in this frequency range. If a station was
observing and did not report an event, we assumed that Sp { ~ 200 MHz) < 100 sfu.
No station was observing near 200 MHz for event No. 165, and we could not clas-
sify its spectrum by our method.

Eighteen of the 193 events in our data set (nine percent) had intermediate
peak-flux -density spectra and 34 (18 percent) had cutoff spectra. Examples of
intermediate spectra are shown in Figure 7 and examples of cutoff spectra are
given in Figures 8 and 9. Examples of intermediate and cutoff spectra with deci-
metric peaks are shown in Figure 7(b), and Figures 9(b) and 9(c), respectively.

We were unable to classify the peak-flux-density spectra of 28 (15 percent) of
the events in our data sample (? in column 18). The most common reason (20
cases) for our inability to construct a meaningful spectrum was the lack of data

=

points, particularly at low frequencies, within the five-minute sliding window.

-

For five other events (Nos. 1, 20, 21, 128, and 172), burst maxima within the

)
U
)

-

five~-minute window were reported across the spectrum, but the peak-flux-density
values at ~ 200 MHz, on which our classification system hinges, were uncertain
and were < 800 sfu. [Because we favored high reported flux values at lower fre-
quencies, we classified four events (Nos. 11, 32, 92, and 169) with doubtful

~ 200-MHz flux values > 800 sfu as U-bursts.] For two cases (Nos. 119 and
136), unresolvable discrepancies in reported flux values at one or more frequen-
cies made it impossible to assign a classification. Note that criterion (a), re-
quiring a spectral maximum = 800 sfu at f = 2 GHz, is the same for all three
spectral classes. Only one event in Table 1 did not satisfy this requirement and
fell into the unclassified category. Event No. 30 had a single spectral maximum
at 06 MHz of 260, 000 sfu; emission declined to a value of 220 sfu at 19 GHz, the
highest frequency at which observations were reported.

2.5 Associated Sweep Frequency Meter Wavelength Events

The starting times of meter wavelength Type Il sweep frequency bursts, as-

sociated with the large microwave bursts under consideration, are given in col-

umn 12 of Table 1, and the occurrence of an associated Type [V burst is indicated
by an X in column 20. To determine the Type II onset (and end) times that are
used in the analyses in the next section, we preferentially used the meter wave-
length times reported by Ft. Davis, Culgoora or Weissenau. If two of these sta-
tions reported an event, we averaged the reported times. However, if one of
these three stations was on patrol and did not report a Type II burst and another

station (e.g., Durnten or Sagamore Hill) did, we considered the Type II report to
be valid. Also, if no meter wavelength Type Il or IV was observed but an event
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Figure 9. Examples of Large Microwave Bursts With Cutoff or Quasi~-Cutoff
Spectra. The events on 15 October 1974 (b) and 11 July 1978 (c) exhibited a
decimetric component in their spectra
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:ﬁ":' was reported at decimeter (c) or decameter (k) wavelengths, we have indicated so

TN by appending a ¢ or a k to the entries in columns 19 and 20 as appropriate. For

sl the Type IV associations, we did not consider events for which continuum (but not

-.;‘ o Type 1V) was reported.

:::: Meter wavelength Type III associations are indicated in column 21 by an X

f.:, (with c and k appended as in columns 19 and 20). We considered a Type III event

'!i. to be associated with a listed microwave burst if Type III emission, reported by

Y any observatory, occurred within 1 10 min of the listed time of the 10-GHz emis-

".::: sion maximum. We considered long duration (S or N) Type III activity to be asso-

i% ciated only if it began within + 15 min of the 10-GHz maximum. The s descriptor

:".' (for "simultaneous") was used when the Type III duration encompassed the time of
the 200-MHz maximum, ended =< 0.5 min prior to the 200-MHz maximum, or

;;-,- began =< 0.5 min after it. Of course, as Svestka and Fritzova -Svestkova21 point

i} out, it is impossible to tell if Type IIl emission and the 200-MHz maximum are

"_g". exactly coincident, without examining the sweep frequency records, for the typi-

':‘ cal case for these large bursts of a Type 1l series lasting for several minutes and

" composed of tens of individual bursts.

o We used QBSA and SGD as sources for the sweep frequency data. In columns

_‘ 19 through 21, N.O. (no observations) indicates events for which sweep frequency

:‘ :: data were not available.

. 2.6 Proton Data

‘; For the proton associations for the events in Table 1, we used the Catalog of

:” Solar Particle Events, 1955- 19621,330 reports by Dodson et al, 31,32 and the pub-

g;(i lished list of van Hollebeke et al"" for the years 1965 through 1972. We made the

:i;}, associations ourselves for the subsequent years. In column 21, we have listed

) the characteristic of the logarithm of the peak prompt (i.e., non-sudden com-

Y mencement associated) >10-MeV proton flux [J (> 10 MeV) in pr cm 2 sec” ' sr !

for each event with proton association. We only considered increases for which

( 30. Svestka, Z., and Simon, P., Eds. (1975) Catalog of Solar Particle Events,
) ; 1955 - 1969, D. Reidel Pub. Co., Dordrecli, Holland.

: 31. Dodson, H. W., Hedeman, E. R., and Mohier, O. C. (1977) Survey and
', \ Comparison of Solar Activity and Energetic Particle Emission in 1970,

AFGL-TR-77-0222, AD A048479.
32. Dodson, H. W., Hedeman, E. R., and Mohler, O. C. (1978) Solar and Geo-

,"’ physical Associations With the Principal Energetic Particle Events in 1871
L 4 and 1972, AFGL-TR-78-0266, AD A065260.

3 -

.o' 33. van Hollebeke, M. A. I., Ma Sung, L. S., and McDonald, F. B. (1975) The
:. variation of solar proton energy spectra and size distribution with helio-
i.. longitude, Sol. Phys. 41:189.
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. the logarithm of the peak near-Earth > 10-MeV flux had a characteristic = -2.
At Somewhat smaller increases, with log (J) < -2, can be observed by existing sat-

i ellite sensors, but fluctuations at this level are common, and it is difficult to

;:'I confidently associate these small increases with flares. 26,33 For the period

:g.l from January 1965 to May 1967, we relied on the proton event classification of

f’:: Smart and Shea34 as used in Svestka and Simon30 to determine the logarithm of

. J (> 10 MeV). For the period from May 1967 to May 1973, we were able to make
;;& this determination directly from the > 10-MeV data acquired by the Johns Hopkins
;3"0 University/Applied Physics Laboratory (JHU/APL) experiments aboard IMP F,

; ; G, and I and published in SGD. For the years 1973 to 1979, we worked with the
i“c 20- to 40-MeV data collected by the JHU/APL sensors aboard IMP H and J. For
i this differential channel, a peak flux of = 10-4 pr cm-2 sec"1 sr-l MeV-1 cor-

& responds to a peak > 10-MeV flux of J = 1072 pr em™2 sec™! sr7! if one assumes
'| a spectral slope of -3. 33 In all cases we subtracted the background due to earlier
;: events when determining log (J).

Since: (1) prominent flares from complex active regions tend to be closely
’5 grouped in time (e. g., the August 1972 region where four major flares occurred
‘:‘: in a five and one-half day period), (2) .big flares' tend to produce big proton ever?ts,
g.:. and (3) large proton events have durations ranging from tens of hours to days, it
:‘\ is not surprising that many of the events in Table 1 occurred when a proton event,
‘;ié perhaps associated with an earlier listed event, was already in progress. In

b some of these cases a fresh injection of protons can be seen above the enhanced

background. In other cases no new injection of protons is evident. In these latter

ﬂ_{\’ cases, we have indicated that a possible event was masked by putting an M in

’#:t.', column 21. The number in parentheses following the M is the characteristic of

= : the logarithm of the enhanced > 10-MeV flux at the time of the listed microwave
,‘3 event. For several events in Table 1, an apparently associated proton event may
“."-i have, in fact, been caused by another flare (or flares) occurring closely in time.
:' (Or, aliernatively, several flares may have contributed to the peak proton flux.)
_“_ This is a particular problem for proton events originating in easterrg;lemisphere
N activity, since these particle events tend to have longer rise times. In column
(". 21, we have denoted these "ambiguous" flare proton event associations with an A.

The number in parentheses following the A is the characteristic of the logarithm
of the peak prompt > 10-MeV flux. It is important to note that not all parent-flare

'Cy
1o
3
; 34. Smart, D. F., and Shea, M. A. (1971) Solar proton event classification
Y system, Sol. Phys. 16:484.
" . 35. Reinhard, R., and Wibberenz, G. (1974) Propagation of flare protons in the
A solar atmosphere, Sol. Phys. 36:473.
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candidates that might have produced a given A event are necessarily listed in
Table 1, but only those that met our selection criteria.

We note that for the period May 1967 to May 1973, Svestka and Simon
31,32

30 and

Dodson et al listed several events in Table 1 as sources of low energy

(< 10 MeV) proton events [ Nos. 6 (spectral class = 1), 63 (1), 72 (1), and 80 (3)],
high energy (> 10 MeV) events with low (< 1072 pr em 2 sec™ ! ar7)) fluxes

{81 (1)], or high energy events only observed by satellites far removed (> 60°)
from the Earth-sun line [ 56 (3) and 84 (?)]. For these events, we have placed a
"-" or an M (followed by the masgking flux) in column 21 depending on whether the

pre-event level was at quiet background or an event was in progress.

2.7 Major Proton Events, 1965-1979

By examining the proton association of the 113 U-bursts in Table 1, we can
determine a false alarm rate for the U-burst forecast tool for predicting proton
events above a given threshold. However, since some major proton events may
be associated with flare-bursts without U-shaped spectra, or may have Sp
(= 2 GHz) < 800 sfu, & 19
of proton events of a given peak intensity that will be associated with U-bursts. In

it is not possible to determine from Table 1 the fraction

order to determine this parameter, we have compiled the data in Table 2 for the
-1

!
L
]
L
]
L]

46 prompt proton events with J (> 10 MeV) = 10 pr cm 2 sec sr-1 (above pre-

o
35

e
-

event background) occurring from 1965 to 1979 that had unambiguous visible hemi-

sphere (85°E = ¢ =< 85°W) parent Ha flare associations. This is the same list of

9 but was not published there.

events that was used in the study by Cliver et al, 1
The J (> 10 MeV) = 10 pr cm-2 sec”! sr™! threshold was selected because it is
currently in use at the NOAA Boulder forecast center.7 Columns 2 and 3 in
Table 2 give the flare date and location. Columns 4 and 5 give the times of the
associated Type Il and Type IV bursts, respectively. In column 6, the peak-flux-
density and the time of its occurrence at 200 MHz (184 to 328 MHz) are given.
This is not a consensus or averaged value of the flux near the frequency, but is
the highest flux value reported by any observatory on patrol in this frequency
range during the time of the Ho flare. This is also the case for column 7 where
the maximum flux density reported by any observatory in the 10-GHz range (8.2
to 11. 8 GHz) is listed along with the time of its occurrence. A "-" in columns 4
and 5 indicates that no event was reported; an N. O. means that the appropriate
observations were not made. In column 8, a U denotes those flare-bursts that
had U-shaped spectra satisfying the criteria used in Table 1, while a 40 indicates
proton events with J (> 10 MeV) = 40 pr cm-2 sec tsr7l.
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Table 2. Large Proton Events 1965-1979 With Unambiguous Visible-Disk- Lnns
Flare Associations Sty
= ean
FLARE 200 MHz 0 GHz IR
DATE  LOCATION  TYPE 1I TYPE IV MAX FLUX/TIME MAX FLUX/TIME U/(J>40) ‘. :'2
2) (3} (4) (5) (6) {7} (8) Ao
05 Feb 65 NOB W25 - (a) 1800-1940 >250/7? 9/1831 - -
24 Mar 66 N20 W42 0234-0253 ? (b) 2090/0234 930/0232 u/40
07 Jul 66 N35 W48 0038-0114  0042-0200 950/0039 12750/0038 u/40
28 Aug 66 N22 EO4 1531-1548  1527-1640 (70000)/1527 3580/1528 u/-
02 Sep 66 N22 WS8 1554-0614 - 5000/(0556) 6970/0556 u/40
23 May 67 N27 E28 1838-1905  1839-2320 N.O. 23000/1947 u/40
28 May 67 N28 W33 0539-0556 - 3600/0540 7300/0542 u/40
09 Jun 68 S14 W08 - 0839-0940c 6300/0848 1360/0850 u/40
29 Sep 68 N17 W52 1619-163%  1636-1650 8700/1620 2810/1620 u/-
. 04 Oct 68 S16 W37 0000-0027 - * (2170}/2359 85/0020 - -
31 Oct 68 S14 W37 2359-0005 0002-0035 790/0009 2000/0011 u/40
01 Nov 68 S18 W47 0852-0900  0853-0915c 175/(0841) 1930/0912 ~/40
0925-0952¢
25 Feb 69 N13 W37 - 0904-1130 80000/0915 6600/0912 u/40
26 Feb 69 N13 W46 0426-0441 - *  >1360/0426 3670/0425 u/-
27 Feb 69 MNI3 W65 1404-1426  1407-1450 3750/1405 3000/ 1408 u/-
07 Jun 69 N1l E34 - 0953-0959c¢ 55/0956 245/0956 - -
25 Sep 69 N14 W14 - - * 400/0834 17/0753 - -
31 Jan 70 S23 W62 1518-1522 1536-1614 137/1807 33/1601 - -
07 Mar 70 514 E48 - - - 42/1126 ~/40
29 Mar 70 N13 W37 0040-0053 0038-0300 >13300/0103 5600/0041 u/40
30 May 70 SO08 W32 - - * 300/0315 30/0340 - -
23 Jul 70 NO9 EO9 - 1836-1903 8000/1934 4200/1845 u/-
1918-1936
1946-1957
05 Nov 70 S12 E36 0324-0351 0325-0450 470/0339 1250/0327 - -
24 Jan 71 N18 W49 2316-2342  2317-0250 1000/2320 9100/2323 u/40
06 Apr 71 S19 W80 N.O, N.O. 50/0941 2300/0944 u/40
. 04 Aug 72 N14 EO8 - 0621-1245 (500000)/0642 36500/0627 u/40
07 Aug 72 N14 W37 1519-1602 1517-154C  (8500)/1516 27056/1522 u/40
29 Apr 73 WNl4 W73 2101-2122  2100-2250 16700/2216 11897/2103 u/-
. 07 Sep 73 S18 W46 1200-1207k 1155-1200k 610/1141 334/1200 - -
1207-1215k
. 04 Jul 74 S16 W08 1359-1407  1353-1446  105000/1408 4950/1354 /-
. 10 Sep 74 N10 E61 2136-2158  2134-2220 3850/2143 9700/2141 u/40
19 Sep 74 NO9 W62 2233-2310  2232-0045 (968} /2238 3300/ 2240 u/40
05 Nov 74 S12 W78 1536-1551  1545-1700 1421/1535 321/1535 U/40(c)
. 30 Apr 76 S08 W46 2106-2128  2105-0055 897/2103 3188/2108 u/40
16 Sep 77 NO7 W20 2233-2247  2230-0025  (2500)/2400 900/2308 7/40
19 Sep 77 NO8 W57 1038-1044 1042 1130 325/0950 2239/1037 u/40
22 Nov 77 N24 W40 - 1002-1045 1600/1035 4735/1004 u/40
. 13 Feb 78 116 W18 0138-0200 0134-0400 300/0152 317/0202 -/40
11 Apr 78 N22 W56 1359-1425  1350-1449 770/1405 1318/1354 u/40
. 28 Apr 78 N22 E38 1320-1331 1319-1540  143600/1323 8728/1329 u/40
. 07 May 78 N23 W72 0328-0355 0329-0715+  15000/0329 3450/0329 u/40
22 Jun 78 N18 E16 1704-1724 1703-1756 1150/1706 75/1742 - -
1735-1748
23 Sep 78 N35 W50 0958-1028  0954-1100 3850/1001 682/1002 -/40
09 Oct 78 S14 W6l 1959-2016 - * 4060/1950 415/1951 - -
. 21 Aug 79 N17 W40 0615-0645 0608-0620c 51/0613 27/0618 -/40
. 15 Nov 79 N29 W35 2147-2206  2145-2235 90/2144 634/2i51 -/40
31
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Table 2. Large Proton Events 1965-1979 With Unambiguous Visible~-Disk-
Flare Associations (Contd)

o

e
-

Notes:

(a) Ft. Davis reported unclassified bursts with Type II characteristics,
1800 to 1811 UT.

AR

i
S
U (b) Type IV emission began at 0300 UT, ~ 2 hr before the Ho onset of
1 the listed flare, and continued until 0523 UT.
"
el (c) The high frequency spectral maximum occurred at f = 35 GHz
§ (Sp ~ 2000 sfu).
, > * Continuum or Type I activity, beginning during the listed flare, was
reported for these events.
Lﬁl'l
(>
Wy
'.&j 3. DATA ANALYSIS
B
'. 3.1 Peak-Flux-Density Spectral Type vs Proton Events
;‘:4" In Table 3 we present our results on the association of proton events with
o large radio bursts of different spectral types for the events in Table 1. Since it

: is well known and understood in terms of interplanetary propagation that the pro-
g. \ tons accelerated in western hemisphere flares are more likely to be observed
near Earth than those with an eastern hemisphere origin, we have divided the

table into two parts, (a) and (b), corresponding to western- and eastern-hemi-

sphere events, respectively. We have further divided the events from each hem-
isphere into clean and masked or ambiguous cases. The clean events are those
in which the flare association is unambiguous, and a fresh injection of > 10-MeV
protons is observed above the flux background, either quiet or disturbed, existing
at the time of the flare.

Considering the clean cases only, the percentage association of protons with

the three spectral types is as follows:

Spectral Type West East Total
(1) U-burst 917 (31/34) 64% (25/39) 77% (56 /73)
(2) Intermediate 1% (57 75% (3/4) 73% (8/11)
(3) Cutoff 75% (3/4) 18% (2/11) 33% (5/15)

The high degree of association between U-bursts and proton events for western
hemisphere flares supports the evidence presented by Castelli and Barron, 5 in-
dicating that the U-burst is an almost sufficient condition for the occurrence of a
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; Table 3. Peak-Flux-Density Spectral Class vs Proton Event Size
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proton event of any size. However, we note that the large western hemisphere
flare -bursts with intermediate and cutoff spectral classifications also have sig-
nificant proton association (71 and 75 percent, respectively). Since the number
of western hemisphere events of these two spectral types is small, it may be
appropriate to increase our sample size by considering the percentage associa-
tion of the three spectral types with protons for flares occurring anywhere on

the visible disk (85°E = ¢ < 85°W). As expected, the percentage association for
U-bursts is smaller when the whole sun is considered. It is significantly below
the 97 percent (70/72) association found by Castelli and Barron for the visible
disk. [We note that the full sun association increases to 82 percent (60/73) if
one includes the four low energy/low flux proton events that were linked to U-
bursts {Section 2).] The proton association for the intermediate events is con-
stant over the full disk, although the total number of cases (11) is still not large.
For the entire sun, however, the percentage association of the cutoff events (33
percent) begins to distinguish itself from that of the U-bursts (77 percent) and the
intermediate events {73 percent). Although one cannot rule out the propagation
effect as the cause of the weak proton association of the eastern hemisphere cut-
off events vs that of the U-bursts, we note that the longitudinal distribution in
this hemisphere of flare-bursts of the three spectral types (with clean proton
circumstances) does not appear to favor either the U-bursts or the intermediate
events vs the bursts with cutoff spectra (Figure 10). The median eastern hemi-
sphere longitude for such events in each spectral class is as follows: U-bursts
(E38, 29 events), intermediate events (E50, 4), and cutoff events (E29, 11). Thus
in a consideration of the relationship of microwave peak-flux-density spectra to
proton events of any size, the U-shaped spectrum is differentiated primarily from
the cutoff spectrum that is deficient, and in many cases apparently lacking, in

200-MHz emission.

3.2 The U-Burst as a Forecast Tool

To derive a false alarm rate for the U-burst forecast tool, we counted as
successes only those cases in which a U-burst was followed by a proton event
with J (> 10 MeV) = 10 pr cm -2 sec.1 sr.l.7 If we consider only western hemi-
sphere events, we have 22 successes vs 21 false alarms for a false alarm rate of
40 percent (21/43). To determine the number of false alarms, we added the num-
ber of U-bursts without proton association to the number of U-bursts with clean
and ambiguous/masked proton associations for which the characteristic of log
(J 10 MeV)was < 0. We did not consider the eight masked or ambiguous cases
for which the peak ~ 10-MeV flux was above the prediction threshold. Technically,

ambiguous cases with J ( - 10 MeV) = 10 pr cm 2 sec™! sr™! should be counted as
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Figure 10. Histograms of the Longitudinal Distribu-
tions of the Ha Flares Associated With the Large
Microwave Bursts in Table 1 Distributed According
to Spectral Classification: (a) U-Shaped, (b) Inter-
mediate, and (c) Cutoff. Only those events with

F Aty :t" ”

y: clean proton circumstances are shown
‘-\ successes, but no such western hemisphere events occurred from 1965 to 1979,
& i.e., all eight events were masked. As a practical consideration, a "yes or no"
:;, forecast of a proton event above a given peak threshold is not very meaningful if
P that threshold is already exceeded, so we did not count these eight cases as false

alarms. However, in this light, one might argue that the predictions for the U-
% bursts on 01 November 1968 or 04 and 07 August 1972, for example, should not
‘:l' be counted as successes but should similarly be disregarded since J (> 10 MeV)
:;' was above threshold at the time of the prediction. Without belaboring the point
‘:: further, we will let it suffice to say that during the period from 1865 to 1979,

proton predictions for western hemisphere flare-bursts with U-shaped spectra
-, would have resulted in a false alarm rate of ~ 50 percent for the current predic- O
1,:_ tion threshold of J ( ~ 10 MeV) = 10 pr cm -2 sm--l sr . Moreover, only 48 §.:~L:
pereent (22/46) of the large proton events listed in Table 2 would have been suc- :_';«:‘:_:
cessfully forecast by the U-burst tool. Expanding the longitude range of flare- -:*'
- bursts for which predictions are made will increase both the fraction of events i
:: V successfully forecast (success rate) and also the false alarm rate. Ta.rnstrom36 “_ ‘)
:: Reference 36 will not be listed here. See References, page 50. ?" ‘:
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noted that for the period from 1966 to 1976, the performance of the U-burst fore -
cast tool would have been optimized by issuing yes-no forecasts following U-bursts
assouciated with flares located between E20 and W90, From the events in Tables 1
and 2, the values of the success and false alarm rates for this longitude range,
actually E20 to W85, are 54 (25/46) and 56 percent (32/57) respectively. We note
that cven if the longitude range from E85 to W85, comprising all events in Table 2,
is considered, the success rate is still only 61 percent (28/46) while the false
alarm rate is 73 pereent (75/103).

Since the U-burst forecast tool was originally developed for prediction of PCA
events with > 2.0 dB of 30-Mllz riometer absorption, 1-3 corresponding to proton
events with J (- 10 MeV) = 40 pr em "2 se(:_l sr-l,“’ 37
sider how well it works for these larger events. Of the 46 events in Table 2, 29

it is appropriate to con-

{indicated by a 40 in column 10) had prompt components with J (> 10 MeV) =

40 pr ¢m 2 sm--l sr-l. Of these 29 events, 22 had U-shaped microwave spectra,
i definitely did not have U-shaped spectra, (Table 2, Nos. 12, 19, 38, 43, 45,
and 46), and we were unable to classify the remaining event (No. 35) from the
data reported in SGD.  Since event No. 19 on 07 March 1970 is considered to be a
doubtful flare association, 19 the percentage association of U-bursts with these
large prompt proton events ranges from a worst case of 78 percent (22/29) to a
best case of 82 percent (23/28) obtained by assuming No. 35 was a U-burst and
disregarding No. 19 because of the parent flare ambiguity. It is interesting to

1 sr_l) proton events (disre-

note that four of the five large ( = 40 pr ¢m 2 sec”
garding No. 19) without U-burst association occurred after 1976. The 22 U-
bursts associated with the J £ 40 proton events are not particularly distinguish-
able from the other U-bursts in Table 1. Although their peak flux densities at
the centimeter and m=2ter wavelengths tend to be larger, as might be expected,
they range from values < 1000 sfu (Table 2, Nos. 2 and 34) to > 20, 000 sfu (Nos.
6, 26, and 27) at 10 GHz, and from values < 1000 sfu (Nos. 3, 11, 25, 36, and
39) to > 50, 000 sfu (Nos. 13 and 40) at 200 MHz. Moreover, the microwave
spectra of these events encompass the full variety of shapes that are allowed by
our definition of a U and include classic examples such as (Table 2) Nos. 2, 7,
13, 33, and 37 [see Figures 1(a), 1(d), and 2(b)] as well as less obvious cases
such as Nos. 3, 24, 25, 32, and 34 [ see Figures 3(b)-3(d)].

37. Juday, R. D., and Adams, G. W. (1969) Riometer measurements, solar

proton intensities and radiation dose rates, Planet. Space Sci. 17:1313.
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3.3 Radio Signatures of Major Proton Events

While Cliver et a.l19 demonstrated that a strong centimeter-wavelength emis-
sion peak (i.e., Sp > 100 sfu) is not a requirement for a prompt proton event with
J (2 10 MeV) = 10 pr em ™2 sec™ sr™! to occur, it might be supposed that a
prominent ( = 1000 sfu) lower frequency (200 MHz) emission peak remains as a
necessary observable for significant particle acceleration in (or escape from)
flares. That this is not the case is shown in Figure 11, where a histogram of
Sp (~ 200 MHz) for the events in Table 2 is presented. Even though we used the
largest ~200-MHz flux density peak reported by any observatory on patrol (and
occurring at any time during the listed Ho flare), eight events (seven, if we ig-
nore 07 March 1970) had Sp ( ~ 200 MHz) = 300 sfu. Thus neither the high fre-
quency ( ~ 9 GHz) nor the low frequency ( ~ 200 MHz) branch of the classical
(i.e., Sp > 1000 sfu) U-burst appears to be a requirement for the occurrence of

a large prompt proton event.

L 3 L4 LS LE . S v Ls Lg
(o] p
1965 - 1979
8k I.nt-.: - E
'I..' .l :.:. ’: :
%e- : S ]
5 S SR
S 4 forzen et S ;
I- 0.8, o 5 Q0 ‘I X X
-“_ n": :.:é_' = G -'s‘::“
R % E :E .: o
2 :_ 5o ‘._‘.' §
SRR 3 2R
15 20 25 30 a5 40 45 50 55 60

LOG Sp (~200 MHZ)

Figure 11. Histogram of the Reported Peak-Flux-Density at ~200 MHz
for the Parent Flares of the Large [J (> 10 MeV) = 10 pr cm~2 sec"1
sr-1) Prompt Proton Events in Table 2 Thit Were Observed From 1965
to 1979, For each event we took the largest flux density reported by
any observatory on patrol near 200 MHz (184 to 328 MHz) during the
time of the associated Ho disk (85°E = ¢ = 83°W) flare. Note that
several (8 of 46) of these events have relatively weak ( =< 300 sfu) emis-
sion at ~ 200 MHz
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Work by Pick~Gutmann, 38 Harvey, 39 and Castelli and Tarnstrom6 indicated
that the integrated microwave flux-density (E,) obtained by taking the product of
the burst mean flux-density and duration, might be an important parameter in re-
gard to proton acceleration in flares. 40 In particular, the Pick-Gutmann and
Castelli and Tarnstrom studies suggest that an integrated flux-density E“ 2 10'17
Joules m-2 Hz.1 is a requirement (or threshold) for the observation of a polar cap
absorption event. However, this value of E, is relatively small and can be
achieved by a predominantly thermal burst {(gradual rise and fall or post-burst
increase) with a mean flux-density of 15 sfu and a duration of two hours. In fact,
with the possible exception of the 21 August event, 18 the weak impulsive phase
proton events discussed by Cliver et al19 had values of E; > 10-17, primarily
because of their long durations. Since there is no apparent close physical link
between thermal microwave emission and non-thermal energetic protons, = the
concept of an integrated microwave flux-density threshold for proton acceleration
in flares may be misleading. 19

At this point, it is of interest to compare the U-shaped spectrum as an almost
necessary or favorable condition for a significant proton event to occur with meter
wavelength phenomena that have been linked to proton acceleration, specifically,
Type 11 bursts>® 2! and Type 1V bursts. 26 41:42 Wwe find that Type Iis and Type
IVs are associated with the events in Table 2 [ and with the subset of events with

J (> 10 MeV) > 40 pr cm 2 sec ! sr™)] in the following percentages:

J (> 10 MeV)
> 10 protons cm 2 sec” ! sr™1 > 40 protons em ™2 sec! sl
Type 1 80% (35/44) 85% (23/27)
Type IV 84% (36/43) 92% (24/26)
U-burst 65% (28/43) 81% (22/27)

38. Pick-Gutmann, M. (1961) Evolution des emissions radioelectriques solaires
de Type IV et leur relation avec d'autres phenomenes solaires et geophys-
iques, Ann. Astrophys. 24:183.

39. Harvey, G. A. (1965) 2800 megacycle per second radiation associated with
Type II and Type 1V solar radio bursts and the relation with other phen-
omena, J. Geophys. Res. 70:2961.

40. Kundu, M. R., and Haddock, F. T. (1960) A relation between solar radio
emission and polar cap absorption of cosmic noise, Nature 186:610.

41. Bell, B. (1963) Type IV solar radio bursts, geomagnetic storms, and polar
cap absorption (PCA) events, Smithsonian Contr. Ap. 8:119.

42. Maxwell, A., Defouw, R. J., and Cummings, P. (1964) Radio evidence for
solar corpuscular emission, Planet. Space Sci. 12:435.
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::'.‘Q‘ The 07 March 1970 event was not included in these percentages; also excluded
,"r’“ were Nos. 25 (Type 1I), 2 [ see footnote (b) to Table 2] and 25 (Type IV), and

. 30 and 35 (U-burst). We emphasize that these percentage associations were ob-
‘:‘&:: tained strictly on the basis of data reported in SGD and QBSA. A reexamination
;: of the sweep frequency records might reveal possible Type Il events [e.g.,

?p( Maxwell,43 and BShme and Kruger44 reported possible Type IIs for two flares in
" ! the August 1972 sequence (Table 1, Nos. 100 and 101) for which no Type II burst
e was initially reported in SGD; see also footnote (a) to Table 2]. Nevertheless, in
,"2 view of the perceived link between Type II bursts and proton events, it is inter-
7' ‘; esting that ~ 20 percent of the events in Table 2, comprising the largest proton

events observed from 1965 to 1979, did not have obvious associated metric Type

tci‘r. e
L

II bursts. We suggest two reasons for the absence of meter Type IIs in several
large proton events. First, Robinson et axl45 have recently shown that interplan-

g
’t:, etary Type Il bursts, often associated with major particle events, 46 can have
‘::::' starting frequencies < 20 MHz and thus go undetected by ground-based sweep fre-
s:: quency patrols. Second, H. Ubarz (1984, private communication) informs us that
2 : a lack of dynamic range on the Weisenau spectrograph during this period (since
. corrected) could have resulted in a few Type IIs being masked by intense Type IV
A5k bursts.
’ j_\ The distribution of the durations of Type II bursts for the events in Table 2
‘3‘) is given in Figure 12(a). This distribution is similar to that obtained by Kahler?®
e from a sample of Type II bursts associated with proton events of any size for the
At period from June 1973 to June 1980. (There are 17 common events in the two
t." §: distributions. )22 In determining the percentage association for Type IVs, we did
E:E not consider reports of either continuum emission or Type I activity (beginning
.:i" during the Heo flare), both of which may be organically related to Type IV. The
.!"h’ five events for which either of these emissions (but not Type IV) were reported
T)."é are indicated in Table 2. The distribution of the durations of the Type IV events
:.‘:' in Table 2 is given in Figure 12(b).
e
("‘ 43. Maxwell, A. (1973) Dynamic spectra of four solar radio bursts during the
2 period 1972 August 2-7, in Rep. UAG-28, pt. I, p. 255, H. E. Coffey, Ed.,
h i::‘t World Data Center A for Somys. , Boulder, Colo.
<t"¥ 44. Béhme, A. , and Kruger, A. (1973) On the type IV bursts of August 2, 4 and
:,_:,.:_ 7‘, 1072, in RTELUAT(&' pt. I, p. 260, H. .E. Coffey, Ed., World Data
i Center A for Solar-Terr. Phys., Boulder, Colo.
“‘!‘ 45. Robinson, R. D., Stewart, R. T., and Cane, H. V. (1984) Properties of

metre-wavelength solar bursts associated with interplanetary Type II
‘n emission, Sol. Phys. 91:159.
".$; 46. Cane, H. V., and Stone, R. G. (1984) Type Il solar radio bursts, inter-
;} planetary shocks, and energetic particle events, Astrophys. J. 282:334.
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;,.v 3.4 Microwave Spectral Class and Type H/1V Bursts
ad
.:. s Because of the statistical relationships between U-bursts and proton events
:: and between Type 11/1V bursts and proton events, we have examined the associa-
;-. tions of Type [1/IV bursts with large microwave bursts of different peak-flux-
o density spectral types. The perceentage associations of these phenomena are pre-
: sented in Table 4, where it can be seen that the percentage associations of micro-
o
o wave bursts of different spectral class with Type 11/1V bursts parallel their asso~-
:q:' ciation with proton events (85°E = ¢ < 85°W). We note that the microwave events
A with cutoff peak-flux -density spectra also appear to be deficient in Type III bursts.
; The statistical results in Table 4 are consistent with the current picture”‘47 -49
5
v
ha References 47 to 49 will not be listed here. See References, page 50.
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'!. Table 4. Association of Sweep Frequency Bursts and Proton Events With N
T Peak-Flux-Density Spectral Classes uh
ol i ox
: TYPE | TYPE  |Eoe- DK o
y JLYA T8 /oI | tean"cases) P
L ¥
By 73) Wead
3 U- SHAPED 93% | 70% |73% |90% | 77% i
-« o
N 0 m X
(e INTERMEDIATE 2% | 61% | 6% | 8% | 73% -{3(-. 3
) - Y
Xy R
B (32) (15) patat
) CUT - OFF 34% | 12% | 19% | 22% | 3% :
K3
0 h )
o 25) 02 N
; UNCLASSIFIED 80% 68% 68% 80 % 67% Ko
ihed ."‘. diy
kN ':!'
1,0 b ¥ ¢
"N At
o
A that the protons observed at Earth are accelerated at a shock front, and it appears ::n:::
i )
\ § that the U-bursts arc preferentially related to protons, in contrast to cutoff events, ic:,i\\:
‘ N
;:-,' because of their higher percentage association with Type I1/1V events. We should :;:Q;:
- ‘
-f be able to check this supposition directly by comparing the proton association of s ':""
N U-bursts (and cutoff events) that were accompanied by Type 1l and/or Type IV .
;y_» emission with those that were not. However, as can be seen from Table 4, the ! .}"“';
’ control group of U-bursts without Type II/IV association is relatively small. Only i"}
) 11 U-bursts that lacked both Type Il and Type IV associations are listed in Table 1. 3‘\
“" The spectra of three of these events, Nos. 19, 90, and 160, are shown in Figures Rk
a(a), 5(c¢), and 2(c), respectively. Nine of these 11 events were associated with "
oy
f;;‘g eastern hemisphere flares. For two of these nine events, Nos. 111 [ -2 (M)] and «_- ':
‘:: 159 [ -1 (M)], possible proton events were masked by small events in progress, :n t;
1:1. while only one of the remaining seven events, No. 90 (-2), was associated with - 5*(
s ety
ﬂ:: protons at the level ( = -2) considered. Of the two western hemisphere events, . i)
£ one, No. 160 | -1 (M)}, was masked, and one was unassociated. Thus only one of _
.* the eight clean control events (albeit seven of these from eastern hemisphere {.'Q‘ A,
‘ flares) was associated with a >10-MeV proton event. For comparison, we note ;i t
X that 74 percent (23/31) of the clean eastern hemisphere U-bursts with Type Il and/ h‘&“’t_
e or Type IV bursts had proton association. The seven clean eastern hemisphere U- o ‘,
bursts without Type 11/IV association had a median longitude of 45°, slightly less 1
> ¥ favorable than the 31 clean eastern hemisphere U-bursts with Type II/IV associa- .-,\.:‘
'f tion, 38°. A consideration of the associations of cutoff events with and without _)-:_\
}-. ".\1\':'
b " H:u.!
13 N
4 :
41 W RN
¥, ()
W i
-.:n‘ X s’
2 S
X %N
, L !
g':‘ o
& R

W7 P
vvt‘.
"

s

W AW Ay TGV T
\‘, . .'_ M \_)\'.-J_:-
A

-«
|

b

) o, o, W AP -._‘q o CRCL RO P
':'!‘I'.': 2NN n‘! c'! .:. 1 l'! "‘"b IN L4 }\~ oM M '. LGNS



Type I1/IV bursts and proton events is also hampered by small numbers although
the results are consistent with the overall statistics presented in Table 4; three of
the five clean cutoff events (E16 median longitude) with Type II/IV association
were related to > 10-MeV events as opposed to two of ten clean cutoff events (E20
median longitude) without Type II/IV association.

At this point, it is instructive to consider in greater detail some of the cutoff
events that have proton association. For the event on 27 October 1968 [ No. 29,
log (J) = -1], Tanaka (see Svestka and Simon,30 Part 2), reports Type IV emis-
sion beginning at 1307 UT, ~ 30 min after the peak listed in Table 1 and near the
start of a major [ Sp (5 GHz) = 860 sfu] burst that we consider to be a secondary
peak in an extended flare event. Similarly for the event on 16 November 1970
[No. 79, log (J) = -1}, the Type I1/IV event begins at 0112 UT, ~ 20 min after the
listed peak, but near the maximum of a significant [ Sp (9.4 GHz) = 1030 sfu] burst
apparently associated with the same Heo flare. For both event Nos. 29 and 79,
200-MHz bursts were reported only in association with the later peak. These
events indicate that it may be misleading to expect the spectrum of a single peak
in a complex microwave burst to tell the entire story in regard to a flare's asso-
ciation with Type II/IV bursts and protons. For the above cases, it is tempting
to speculate that the flares evolved from a compact to an open magnetic field
Structure. 30

One cutoff burst was associated with a large J (> 10 MeV) proton event. In
the 15 November 1979 event [log (J) = 1], the Type I1/IV event began at 2147 UT,
4.2 min before the 10-GHz maximum. It can be seen from Svestka and Fritzova-
Svestkova's21 Figure 4 that such events are relatively rare. 39 This event also
had a low (< 2.7 GHz) and apparently broad spectral maximum [ Figure 9(d)}. In
the published Penticton record of this event, 12 the listed peak is preceded by a
smaller [Sp (2. 8 GHz) ~ 250 sfu] peak at 2142 UT. Thus we tentatively identify
the listed event as a secondary peak in a complex microwave Type IV event,
and, as such, note that it may have a rather different nature than the other cutoff

events in Table 1.

50. Pallavicini, R., Serio, S., and Vaiana, G. S. (1977) A survey of soft x-ray
limb flare images: the relation between their structure in the corona and
other physical parameters, Astrophys. J. 216:108.

51. Cliver, E. W. (1983) Secondary peaks in solar microwave outbursts, Sol.
Phys. 84:347.
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E:: 3.5 Timing of Type I Burst and 200-MHz Peak

- Given the statistical associations between Type Ils, protons, and U-bursts

) (and the relative deficiency of Type II emission and proton association in the cut-

* off events), it seems logical to ask if the shock wave observed via the Type Il

a burst, and presumably accelerating the protons, might in some way account for

:}‘ the low frequency branch of the U, particularly the high fluxes often observed

. near 200 MHz. There are two possible ways that the Type II burst could account

W for, or contribute to, the 200-MHz radiation. First the Type II itself is gener-

‘\’ ally an intense emission with flux densities ranging from ~ 50 to several thousand

) sfu. 24 For those events with relatively high starting frequencies, emission at the

=

5

second harmonic would be in the 200-MHz range and thus might contribute to the

low frequency branch of the U. About one-third of Type II bursts have fundamen-

.

& tal starting frequencies > 100 MHz, 52 and about 60 percent of Type IIs exhibit
¥
.f harmonic structure. 24 A second passible way in which a shock wave might con-

0 tribute to the 200-MHz emission that often comprises the low frequency branch of

¥
Vy: the U is through the flare continuum emission designated as FC II by Robinson and

) Smerd. 53 This emission follows the Type 1I burst at any frequency and is thought

¥ to be due to shock accelerated electrons trapped in a large scale magnetic loop. 54
:' To see if either the Type II or FC II could contribute to the 200-MHz emission in
¥ U-bursts, we determined whether the associated (if any) Type II burst was in

?!‘ progress at the time of the 200-MHz peak (within the sliding five -minute window)

[ ¥

for each of the U-bursts in Table 1. We counted as concomitant those cases in

&y which Type Il bursts were in progress or began within = 0.5 min after the aver-
:. age peak time at 200 MHz. Since the low frequency branch of the U-shaped spec-
"f trum may be due to flash phase accelerated electrons, we also looked to see if a

' Type III burst was in progress at the time of the low frequency maximum (Xs in

column 21 of Table 1), since these emissions are a characteristic component of

) the impulsive phase. 55 (Type IV emission was in progress at the time of the 200-
: MHz peak for about half of the U-bursts, but since flare continuum can also have

U
p
A
(
I} 52. Maxwell, A., and Thompson, A. R. (1962) Spectral observations of radio
L bursts, II: slow drift bursts and coronal streamers, Astrophys. J. 135:138.
"“ 53. Robinson, R. D., and Smerd, S. F. (1975) Solar flare continua at the metre

N wavelengths, Proc. ASA 2:374.
. 54, Robinson, R. D. (1978) A study of solar flare continuum events observed at

: metre wavelengths, Aust. J. Phys. i£:533.
37—- 55. Kane, S. R. (1974) Impulsive (flash) phase of solar flares: Hard x-ray micro- Lyt
;l: wave, euv and optical obgervations, in Coronal Disturbances, Proc. of IAU ..;. )
L Symp. No. 57, p. 105, G. Newkirk, Jr., Ed., D. Reidel Pub. Co., f i
? Dordrecht, Holland. ; ¢:
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a component attributed to primary phase electrons, 54 an ambiguity exists.) The ‘.: \
results of the timing comparisons were as follows: h‘g

In Progress at
Time of 200-MHz Peak*

(%)
Type II only 19
Type II and Type III 30
Type III only 44
Neither 7

*Sample size = 103 events. For 10 events the re-
ported 200-MHz maximum either fell well outside
the five-minute window, observations were not
made at 200 MHz, or sweep frequency observa-
tions were not available.

From these statistics, it can be seen that the FC I and Type Il emission
could contribute to the peak 200-MHz emission in U-bursts in at most ~ 50 per-
cent of the cases, assuming that the starting frequency of the fundamental Type 11
emission is > 100 MHz. For 21 U-bursts in Table | that occurred during
Culgoora observing hours, we were able to check the starting frequencies of the
associated Type Ils from a compilation by Robinson et al. 56 Harmonic emission
started at f ; 200 MHz for only about half of these events (11/21 = 52 percent), 52
although for those events where the Type Il was in progress at the time of the 200-
MHz peak, harmonic emission bzgan at f > 200 MHz in 71 percent (10/14) of the
cases. (We note in passing that only one of the 11 20th solar cycle U-bursts had
starting harmonic frequencies > 200 MHz vs 10 of 10 from the 21st solar cycle.)
For 51 percent of the U-bursts in our sample, a Type II was either not observed,
ended prior to, or began = 0.5 min after the peak of the 200-MHz emission. A
comparison of the pzak 200-MHz flux densities of these U-bursts (the 51 percent)
with those of the Type II coincident events revealed no marked differences between
the two distributions. The median 200-MHz flux value of the Type II coincident
events (3400 sfu) is larger. as might be expected, but the median value for the
non-coincident events (2000 sfu) is also well above the minimum value (2 1000 sfu)
required for the classical U-burst. Since the 200-MHz peak is coincident with

56. Robinson, R. D., Tuxford, J. M., Sheridan, K. V., and Stewart, R. T.
(1983) A catalogue of major metre-wavelength solar events recorded by
the DAPTO and (ulgoora solar radio observatories (1961 - 1981), Proc.
ASA 5:84.
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Type III emission for 74 percent of the U-bursts examined, it appears that flash

* Sl P,

phase electrons are primarily responsible for the low frequency branch of the

U-shaped spectrum. -
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,' 4. DISCUSSION

. ‘ .\:' "
KA
: 4.1 Summary o
f .; From this study of the peak-flux-density spectra of nearly 200 large [Sp ( = 2 -_‘__;
.E GHz) = 800 sfu] microwave bursts and their associated proton and sweep frequen- }'_:,J-
cy emissions, we have found the following: .;:::
" (1) There appear to be two basic peak-flux-density spectral types: (a) U- o
. shaped, with two maxima = 800 sfu in the range from 200 MHz to = 10 GHz (59
'a o
z‘ percent of all events) and (b) cutoff, with a spectral maximum = 800 sfuatf =2 “ie
\ : GHz and Sp (200 MHz) < 100 sfu (18 percent). Nine percent of the events had what :‘_
E we termed intermediate spectra with a spectral maximum = 800 sfu at f = 2 GHz _;'»
’. and 100 sfu =< Sp (200 MHz) < 800 sfu. We were unable to classify 15 percent of . X 4
.. the events in our data sample. o
‘{:‘: (2) If the current NOAA proton prediction threshold of J (> 10 MeV) = 10 :-tt
10y protons cm -2 see”! sr-1 had been in effect during the period covered by our data ‘::'}
3 Pt
- base (1965-1979), the U-burst "yes or no" proton event forecast tool would have -i}"'
o had a false alarm rate of ~ 50 percent and would have failed to provide a warning n,
o for ~ 50 percent of the significant prompt proton flares attributable to disk flares A
:; ’ during this period. These figures apply if proton event warnings had been issued -:-‘-:.
: only following U-bursts associated with western hemisphere flares. If warnings :'_-:1:
"l had been made following U-bursts from anywhere on the sun (85°E = ¢ < 85°W), 3::‘-;
E X" the false alarm rate would have been 73 percent, and 39 percent of the significant '-9".'-\'
‘) proton events would not have been predicted by this method.
':j (3) The associations of flare-bursts (85°E = ¢ < 85°W) of different peak-
:: flux-density spectral type with Type 11 and/or Type IV bursts and with > 10-MeV
$? proton events of any peak intensity { = 0.01 pr em 2 sec”! sr™!) are as follows:
o U-shaped Type 11/1V (90 percent of U-bursts are associated with Type II/IV
_~ events), protons (77 percent); intermediate - Type II/IV (78 percent), protons e
‘o (73 percent); cutoff - Type 11/IV (22 percent), protons (33 percent). -\::
x,’ (4) In 74 percent of the microwave bursts with U-shaped spectra, the 200- N
ol 3 e
?’ MHz emission peak occurred during a Type 111 event. For 49 percent of the U- :

: M
g | bursts, a Type Il was in progress during, or began = 0.5 min after, the peak T

’ 200-MHz emission.
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N (5) Several (8 of 46) of the proton ¢vents with J (- 10 MeV) = 10 protons
L - - -
"& cm 2 see gy L (1965 - 1979) origmated in visible hemisphere flares with rela-
4 tively weak (Sp <+ 300 stu) associated 200-MHz emission.
W
O
X
Dy £.2 The U-Burst as a Prediction Tool
n}:
‘.{; The pessimistic picture of the U-shaped peak-flux-density spectrum as a
¥ i
v proton prediction tool that we have presented in this study contrasts with that of

{ can lier studies.” We point out, howcever, that the differences in our results stem
\, primarily from: (1) the use of a fower event prediction threshold than was previ-

;5 ously usul,7 i.e., J (> 10 MeV) - 10 pr ('m_z sm-—l sr—I vsJ 40 pr (-m_2 sec
'\ -1 2,6 . . . . . .
‘; sr l, *7 and (2) the observation after 1976, the final year considered in studies

by Castelli and H:n-ron:) and Castellh and Tarnstrom, 6 of several (Table 2, Nos.

38, 43, 45, and 46) large (I 40) proton events that originated in flares with non-

5 U microwave spectra. Despite differences in the basic approach (and the classi-

: fication of several individual events) between ours and the earlier studies, our

::9;. results pertaining to the U-burst as a forecast tool are in general agreement with
[ those of Castelli and his co-workers for the prediction threshold and the time

.’ period they considered.  Morcover, until a more reliable carly indicator of pro-
' ton acceleration/escape in flares is identified, the U-burst tool {or var‘iants':ﬂ)

! :1 will most likely continue to be used in combination with Ho and sweep-frequency

; ] radio signatures at solar forecast centers.

: Nevertheless, the recent obscervation of four large (J - 40) proton events

\7 | two of which (Table 2, Nos. 43 and 45) were ground level events] associated

."‘ with microwave bursts with non-U spectra underscores suspicions raised in other

::: stu(,livsw’zz’mi that the U-shapced spectrum may not have a strong physical con-

F“; nection with the process by which the protons observed at Earth are accelerated.

& Even for the J o 40 events that were preceded in ~ 80 percent of the cases by

‘;:’ bursts with U-shaped spectra, the wide variation in spectral shape among events

b3 like 06 April 1971 | Table 1, No. 86, and Figure 3(c)] with a large decimetric

; peak and weak 200-MHz emission, events like 07 July 196658 and 24 January 1971

: :. | No. 85, Figure 3(b)} that are classified as U-bursts because of relatively sharp

spectral variations in the decimetric range, and the more classic types such as

Nos. 5 and 131 [ Figures 1(a) and 1{d)], muikes it difficult to embrace U-bursts as

7. Akinyan, S. T., Chertok, 1. M., and Fomichev, V. V. (1979) Quantitative
forecasts of solar protons based on solar flare radio data, in Solar Ter-
restrial Predictions Proceedings, vol. 3, D-14, R. F. Donnelly, Ed.,
National Oceanic and Atmospheric Administration, Boulder, Colo.

58. Svestka, Z. (1976) Solar Flares, D. Reidel Pub. Co., Hingham, Mass.,
p. 193.
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a special class of microwave bursts that are somehow uniquely related to inter-
planetary proton events. We attribute the high percentage of association (31 of
34 western hemisphere cases) of these phenomena to the fact that U-bursts are
generally (90 percent of the time) accompanied by Type II and/or Type IV bursts
indicative of a second stage process involving a shock wave.

4.3 The Low Frequency Branch of the U-Shaped Spectrum

Kundu and Vlahos59 have suggested that the U-shaped spectrum is a reflec-

tion of nothing more than the fact that there are two different sources of burst
radiation, one for centimeter wavelengths and one for decimeter wavelengths,
with different electron energy distributions and different magnetic fields. In this
study we asked whether the two emission maxima might not also reflect different
acceleration processes for the radiating electrons that give rise to the separate
branches of the U-shaped spectrum. In particular we entertained a picture in
which a shock wave might account for the low frequency (~ 200 MHz) branch of
the U, either through emission from the second harmonic of the Type II burst or
through flare continuum (FC 1I) radiation, 54 in those cases where the starting
frequency of the fundamental Type II burst is 2 100 MHz. We found that this pic-
ture cannot obtain in general since a Type II burst was in progress at the time of
the low frequency maximum (nominally at 200 MHz) for only about half of the U-
bursts in our sample. This conclusion is based on the assumption that the shock
either does not exist or is incapable of accelerating electrons prior to the occur-
rence of a Type Il burst. In 74 percent of the cases, the peak 200-MHz emission
in U-bursts occurred at the time of reported Type IIl emission, suggesting that
the low frequency branch of the U is primarily due to radiation from flash phase
electrons. In fact, since both the starting frequency and intensity of Type III
emission can be expected to increase with the size of the associated microwave
(hard x-ray) burst, 60 it seems likely that, for the U-bursts, the low frequency
branch is often due to the Type III burst itself. In this context we note that, in
addition to having relatively weak proton and Type II associations, the cutoff
events in our sample were also deficient in Type IIl emission.

59. Kundu, M. R., and Vlahos, L. (1982) Solar microwave bursts — a review, =

Space Science Reviews 32:405. ol

60. Kane, S. R. (1981) Energetic electrons, type IIl radio bursts, and impulsive :.'-;‘;:;-:‘
solar flare x-rays, Astrophys. J. 247:1113. AR
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i 4.4 U-Bursts and the Big Flare Syndrome
. The large [Sp ( = 2 GHz) = 800 sfu] microwave bursts examined in the study )
i.:: tend to have U-shaped peak-flux-density spectra (59 percent, 113/193) and to be :1;;:.‘
::: associated with Type I11/1V bursts (76 percent, 139/184) and > 10-MeV proton ﬁ:’,:.:i
::: events (69 percent, 77/111). However, the small number of events with U-shaped :;v::
h spectra that lacked both Type II and Type IV emission were poorly associated with '\f:::t
Y interplanetary protons. This argues that the Type I1I/IV burst is the critical ob- L
:, servable for particle acceleration and not the U-shaped spectrum. The fact that ;: :;;‘
g the statistical association of the cutoff bursts with proton events parallels their (.2 !
g: associations with Type II/IV bursts provides additional support for this contention. ? ! :
, In addition, we note that for the majority of the U-bursts in our sample, the high v
fluxes often observed near 200 MHz appear to be more closely related to Type III »
;- emission than to the shock wave (Type II burst) that is presumably accelerating $:::;‘
‘}w._ the protons. Thus we conclude that the U-shaped spectrum, at both high (~ 10 :::::.‘?
2 GHz) and low (~200 MHz) frequencies, is primarily an impulsive phase phenom- A:Qfl:;::
.» enon and that the observed statistical U-burst/proton association is probably due !:::!:{
to the Big Flare Syndrome22 rather than the result of a direct physical connection
"\; between these two phenomena. The observation that the cutoff events are defi- {§
h¢ cient in Type III as well as Type Il emission relative to the U-bursts, however, }:.‘-::,
j > suggests that a less direct or "once-removed' connection may exist between the L' :
3'1 U-shaped spectrum and proton acceleration in that the probability of shock forma- {
. tion (Type II/protons) in these large flares apparently increases in more open o
_} magnetic field structures (Type 11/ U-burst). },
3 i
e 4.5 Impulsive Phase Proton Acceleration &_:. '
, Forrest61 and Forrest and Chupp62 have recently presented y-ray evidence ¥ v“f
e, indicating that ions are accelerated along with electrons in the impulsive phase of e
:' all flares. However, Cliver et 213 have shown that the correlation between Y-ray 5&::;
.} line fluences and interplanetary proton fluxes is poor. This leaves open the pos- 0*;;:":
:, sibility that the ions observed at the sun via gamma ray line emission are accel- :);26:}
Il erated by a different process than the bulk of the protons detected at 1 a.u. In .:!,."f
f A particular, we favor a picture, as advocated above, in which the protons observed —
-C; at Earth are accelerated in a second stage process involving a shock wave. 64,65 ,-'7__ .
'y Cane et 316;') have shown that interplanetary particles accelerated during the t ,: :1
s flare impulsive phase have a narrower cone of emission/propagation than those 'f.}

L0

R TR

presumably accelerated by a shock wave. In this context we note that nine of the

- 2.f . ,
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References 61 to 65 will not be listed here. See References, page 50.
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11 U-bursts lacking Type II/IV association originated in eastern hemisphere
2 flares, making it difficult to observe at Earth any impulsively accelerated protons
that may have escaped from the sun in these events.

o
i{{}" 4.6 Proton Flares With Weak 200-MHz Emission
i?" As a final comment, we note that in the largest disk flare associated proton
:»“;‘ events (J > 10) observed from 1965 to 1979, the 200~-MHz emission was often rel-
3'»}'&' atively weak, =< 300 sfu in eight of 46 cases. While either Type II or Type IV
Y:Q:l“ emission was lacking in a comparable number of cases, the identification of these
;' sweep frequency events is more subject to interpretation, and it is possible that
§ upon reexamination of the original records, the missing phenomenon might be
) noted. The 200-MHz records should be less ambiguous, however, and we con-
; sidered the highest flux density reported by any observatory during the associated oy
§ }; He flare. Moreover, inspection of Table 2 reveals that several of even the events é‘
: "\ with J (> 10 MeV) > 40 pr cm-2 sec-1 sr—1 had relatively weak emission at ‘
‘?'/*, f ~ 200 MHz, the lowest frequency currently monitored on a 24 -hr per day basis '|:e
" i by the ground based solar radio patrol. Thus the low -frequency (~ 200 MHz) A
3 branch of the classical (i.e., Sp 2> 1000 sfu) U-burst does not appear to be a re- e
% : quirement for the occurrence of a large prompt proton event. The lack of a radio :_w.
o ' response at this frequency commensurate with the observed intensities of these f-":
N large proton events indicates that, for certain flares, a radio signature of particle l,‘
I acceleration/escape may only exist at lower frequencies ( < 200 MHz) as was the e
. case for the 04 October 1965 proton flare, 66.67 the GLE -associated flare on 21 *vm
'_‘: August 1979, 18 and the eruptive filament event on 05 December 1981. 68 :‘_f:j-\
e R
190 N
i) ik
' " ‘l;.‘.:
. 3
higs 6:‘0’
thy WYy
2 w,
66. Béhme, A. (1972a) The time behavior of the continua during the initial stage b
of type IV bursts, Sol. Phys. 24:457. e
67. BShme, A. (1972b) Spectral behaviour and proton effects of the type IV broad .lf{

band continua, Sol. Phys. 25:478.

68. Kahler, S. W., Cliver, E. W., Cane, H. V., McGuire, R. E., Stone, R. G.,
and Sheeley, Jr.. N. R. (1986) Solar filament eruptions and energetic
particle events, Astrophys. J. (in press).

ror ow_r
P ]

49 0]

NN

N5

»n

el

fol

N

R

A L EN LA A TN I O R R O D TN L DM AT LR R Ry (s, { X !
RN .U‘Q,"n R RN '1‘,“1*’&”&"..';0"“ bg‘%li.-'\". l"‘u.‘.';..‘l‘ ;:"’l y AN .’s‘ﬂ ‘:I!.a".;“,hl (IS0 < WST LY




oo e

e

-~ am w6

PR R R

S

S I

g o e

AR A T

R

1)
.

M A A
Y

References

Castelli, J. P., Aarons, J., and Michael, G. A. (1967) Flux density measure-
ments of radio bursts of proton-producing flares and nonproton flares, J.
Geophys. Res. 72:5491.

Castelli, J. P. (1968) Observation and Forecasting of Solar Proton Events,
AFCRL-68-0104, AD 669347.

O'Brien, W. L. (1970) The Prediction of Solar Proton Events Based on Solar
Radio Emission, AFCRL-70-0425, AD 875024.

Castelli, J. P., and Guidice, D. A. (1972a) On the Classification, Distribution,
and Interpretation of Solar Microwave Burst Spectra and Related Topics,
AFCRL-72-0049, AD 741750.

Castelli, J. P., and Barron, W. R. (1977) A catalog of solar radio bursts
1966 - 1976 having spectral characteristics predictive of proton activity,
J. Geophys. Res. 82:1275.

Castelli, J. P., and Tarnstrom, G. L. (1978) A Catalog of Proton Events
1966 - 1976 Having Non-Classical Solar Radio Burst Spectra, AFGL-TR-78-
0121, AD A060816.

Heckman, G. (19879) Predictions of the space environment services center, in
Solar Terrestrial Predictions Proceedings, vol. 1, p. 322, R. F. Donnelly,
Ed., National Oceanic and Atmospheric Administration, Boulder, Colo.

Cliver, E. W., Secan, J. A., Beard, E. D., and Manley, J. A, (1978) Pre-
diction of solar proton events at the Air Force Global Weather Central's
space environmental forecasting facility, in Effect of the lonosphere on
Space and Terrestrial Systems, Conf. Proc., J. M. Goodman, Ed., U. S.
Government Printing Office, Washington, D. C.

Thompson, R. L., and Secan, J. A. (1979) Geophysical forecasting at AFGWC,
in Solar Terrestrial Predictions Proceedings, vol. 1, p. 350, R. F.
Donnelly, Ed.’, National Oceanic and Atmospheric Administration, Boulder,
Colo.

50

DOSAAK) G W 5 TN At N
BN W) () O k
A R P A

AR

A - e
[T I »

X Ll =PI

! K s, "a
Py = d g
& P ¥

$

OO

%
7
MW

s

A

L




Castelli, J. P., Aarons, J., Guidice, D. A., and Straka, R. M. (1973) The
solar radio patrol network of the USAF and its application, Proc. 1EEE
61:1307.

11. Guidice, D. A., Cliver, E. W., Barron, W. R., and Kahler, S. (1981) The Wy
Air Force RSTN system, Bull. AAS }}_:553. !

12. Solar Geophysical Data, National Oceanic and Atmospheric Administration,

Boulder, Colo. ‘.\:

13. Quarterly Bulletin of Solar Activity, International Astronomical Union, b, ;’-?:1
Eidgen. Sternwarte, Zurich.

14. Castelli, J. P., and Guidice, D. A. (1972b) The radio event associated with !‘Q{
the polar cap absorption event of 2 November 1969, in Proc. of COSPAR g
Symposium on Particle Event of November 1969, p. 27, J. C. Ulwick, Ed., o0
AFCRL-72-0474, AD 763081. "

15. Wild, J. P., Smerd, S. F., and Weiss, A. A. (1963) Solar bursts, Ann. Rev. Nk
Astron. Astrophys. 1:291. Whid,

16. de Jager, C. (1969) Solar flares; properties and problems, in Proc. of o
COSPAR Symposium on Solar Flares and Space Research, p. 1, C. de v .:"
Jager and Z. Svestka, Eds., North Holland Pub. Co., Amsterdam, Holland. ‘ :g'.:

17. Lin, R. P., and Hudson, H. S. (1976) Non-thermal processes in large solar ‘:l:*:v’
flares, Sol. Phys. 50:153. !

18. Cliver, E. W., Kahler, S. W., Cane, H. V., Koomen, M. J., Michels, i

D. J., Howard, R. A., and Sheeley, Jr., N. R. (1983b) The GLE -asso-

ciated flare of 21 August, 1979, Sol. Phys. 89:181. LN
19. Cliver, E. W., Kahler, S. W., and McIntosh, P. S. (1983c) Solar proton . };(
flares with weak impulsive phases, Astrophys. J. 264:699. :‘ \
20. Lin, R. P. (1970) The emission and propagation of 40 keV solar flare elec- p;; i
trons. I: the relationship of 40 keV electron to energetic proton and rela- AR
tivistic electron emission by the sun, Sol. Phys. 12:266.
21. Svestka, Z., and Fritzova-Svestkova, L. (1974) Type II radio bursts and TN
particle acceleration, Sol. Phys. §§:417. iy 53
22. Kahler, S. W. (1982a) The role of the big flare syndrome in correlations of ‘*‘.,
solar energetic proton fluxes and microwave burst parameters, J. Geophys. fy ,c..,;
Res. 87:3439. s
23. Bailey, D. K. (1964) Polar cap absorption, Planet. Space Sci. 12:495.
24. Kundu, M. R. (1965) Solar Radio Astronomy, Interscience Publishers, New »
York, New York. o e
1% ot
25. Kai, K. (1968) Evolutional features of solar microwave type IV bursts, Pub. "g‘,‘;,;f.;,
Astron. Soc. Japan 20:140. S
26. Kahler, S. W. (1982b) Radio burst characteristics of solar proton flares, :i:‘%'t
Astrophys. J. 261:710. ‘
27. Tanaka, H., Castelli, J. P., Covington, A. E., Kruger, A., Landecker, -
T. L., and Tlamicha, A. (1973) Absolute calibration of solar radio flux R
density in the microwave region, Sol. Phys. 29:243. ::,; }:
28. Zirin, H., and Tanaka, K. (1973) The flares of August 1972, Sol. Phys. .:'_‘\4_;
32:173. R
N — i 1\
R 29. Roelof, E. C., Dodson, H. W., and Hedeman, E. R. (1983) Dependence of =
T radio emission in large Ha flares 1967 - 1970 upon the orientation of the
,:.!" local solar magnetic field, Sol. Phys. 85:339. :-\J
':b' .{} 3
::'l.‘ :.f%"-
51 3 A,
N
t* A
v
N
Ay
e }

£

T T SN0 R R e AR TG )
MM$;FA¥£riﬁiﬁlﬁiﬁﬁﬁﬁiﬁ




31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Svestka, Z., and Simon, P., Eds. (1975) Catalog of Solar Particle Events,
1955 - 1969, D. Reidel Pub. Co., Dordrecht, &olland.

Dodson, H. W., Hedeman, E. R., and Mohler, O. C. (1977) Survezi and

Comparison of Solar Activity and Energetic Particle Emission In
AFGY-TR-TT-0227, AD AO464TO. =

Dodson, H. W., Hedeman, E. R., and Mohler, O. C. (1978) Solar and Geo-

and 1972, AFGL-TR-78-0266, AD A065260.

van Hollebeke, M. A. 1., Ma Sung, L. S., and McDonald, F. B. (1975) The
variation of solar proton energy spectra and size distribution with helio-
longitude, Sol. Phys. 41:189.

Smart, D. F., and Shea, M. A. (1971) Solar proton event classification
system, Sol. Phys. 16:484.

Reinhard, R., and Wibberenz, G. (1974) Propagation of flare protons in the
solar atmosphere, Sol. Phys. 36:473.

Tarnstrom, G. L. (1978) Terrestrial proton events and solar radio bursts
with U-shaped spectra, unpublished report.

Juday, R. D., and Adams, G. W. (1969) Riometer measurements, solar
proton intensities and radiation dose rates, Planet. Space Sci. 17:1313.

Pick-Gutmann, M. (1961) Evolution des emissions radioelectriques solaires
de Type IV et leur relation avec d'autres phenomenes solaires et geophys-
iques, Ann. Astrophys. 24:183.

Harvey, G. A. (1965) 2800 megacycle per second radiation associated with
Type Il and Type IV solar radio bursts and the relation with other phen-
omena, J. Geophys. Res. 70:2961.

Kundu, M. R., and Haddock, F. T. (1960) A relation between solar radio
emission and polar cap absorption of cosmic noise, Nature 186:" ..

Bell, B. (1963) Type IV solar radio bursts, geomagnetic storms, and polar
cap absorption (PCA) events, Smithsonian Contr. Ap. 8:119.

Maxwell, A., Defouw, R. J., and Cummings, P. (1964) Radio evidence for
solar corpuscular emission, Planet. Space Sci. 12:435.

Maxwell, A. (1973) Dynamic spectra of four solar radio bursts during the
period 1972 August 2-7, in Rep. UAG-28, pt. I, p. 255, H. E. Coffey, Ed.,
World Data Center A for Solar-Terr. Phys., Boulder, Colo.

Bohme, A., and Kruger, A. (1973) On the type IV bursts of August 2, 4 and
7, 1972, in Rep. UAG-28, pt. I, p. 260, H. E. Coffey, Ed., World Data
Center A for Solar-Terr. Phys., Boulder, Colo.

Robinson, R. D., Stewart, R. T., and Cane, H. V. (1984) Properties of
metre-wavelength solar bursts associated with interplanetary Type Il
emission, Sol. Phys. 91:159.

Cane, H. V., and Stone, R. G. (1984) Type Il solar radio bursts, inler-
planetary shocks, and energetic particle events, Astrophys. J. 282:339.

Kahler, S. W., Hildner, E., and van Hollebcke, M. A. I. (1978) Prompt
solar proton events and coronal mass ejections, Sol. Phys. 57:429.

Cliver, E. W., Kahler, S. W., Shea, M. A., and Smart, D. IF. (1982)
Injection onsets of ~ 2 GeV protons, ~1 MeV electrons, and ~ 100 keV
electrons in solar cosmic ray flares, Astrophys. J. 260:362.

Mason, G. M., Gloeckler, G., and Hovestadt, D. (1984) Temporal varia-
tions of nucleonic abundances in solar flare energetic particle events. II.
Evidence for large scale shock acceleration, Astrophys. J. 280:902.

52




T TR T SRR S NNy W W VTN N NN, Ny =—wnmn,y"n—w; WIS WIS WO W W W W LAaE

50. Pallavicini, R., Serio, S., and Vaiana, G. S. (1977) A survey of soft x-ray
limb flare images: the relation between their structure in the corona and
other physical parameters, Astrophys. J. 216:108.

51. Cliver, E. W. (1983) Secondary peaks in solar microwave outbursts, Sol. g,
Phys. 84:347. 43.:.'

52. Maxwell, A., and Thompson, A. R. (1962) Spectral observations of radio ;ﬂ v
bursts, II: slow drift bursts and coronal streamers, Astrophys. J. 135:138. ', ‘ﬂ,g

53. Robinson, R. D., and Smerd, S. F. (1975) Solar flare continua at the metre S0
wavelengths, Proc. ASA 3:374.

54. Robinson, R. D. (1978) A study of solar flare continuum events observed at ’K? )
metre wavelengths, Aust. J. Phys. 31:533. o :?‘

55. Kane, S. R. (1974) Impulsive (flash) phase of solar flares: Hard x-ray micro- . JL
wave, euv and optical observations, in Coronal Disturbances, Proc. of IAU ::

Symp. No. 57, p. 105, G. Newkirk, Jr., Ed., D. Reidel Pub. Co., X 33:
Dordrecht, Holland. i

56. Robinson, R. D., Tuxford, J. M., Sheridan, K. V., and Stewart, R. T.
(1983) A catalogue of major metre-wavelength solar events recorded by the

DAPTO and Culgoora solar radio observatories (1961 - 1981), Proc. ASA o
5:84. *ar
o~ .‘.\
57. Akinyan, S. T., Chertok, I. M., and Fomichev, V. V. (1979) Quantitative N
forecasts of solar protons based on solar flare radio data, in Solar Terres- R
trial Predictions Proceedings, vol. 3, D-14, R. F. Donnelly, Ed.,
National Oceanic and Atmospheric Administration, Boulder, Colo. o
58. Svestka, Z. (1976) Solar Flares, D. Reidel Pub. Co., Hingham, Mass., "":f
p. 193. ' W
59. Kundu, M. R., and Vlahos, L. (1982) Solar microwave bursts — a review, ';::2
Space Science Reviews 32:405. W e
60. Kane, S. R. (1981) Energetic electrons, type III radio bursts, and impulsive )
solar flare x-rays, Astrophys. J. 247:1113. o
Astropnys. J. 23t by
61. Forrest, D. J. (1983) Solar y-ray lines, Am. Inst. of Physics Conf. Proc. Rk
101:3. KA
i (
62. Forrest, D. J., and Chupp, E. L. (1983) Simultaneous acceleration of elec- 5 ~. )
trons and ions in solar flares, Nature 305:5932. \.L:"
63. Cliver, E. W., Forrest, D. J., McGuire, R. E., and von Rosenvinge, T. T. ‘
(1983a) Nuclear gamma rays and solar proton events, Conf. Pap. Int. Cos- S
mic Ray Conf. 18th 10:342. A .5_
64. Kahler, S. W., Sheeley, Jr., N. R., Howard, R. A., Koomen, M. J.,
Michels, D. J., McGuire, R. E., von Rosenvinge, T. T., and Reames, Ky
D. V. (1984) Associations between coronal mass ejections and solar ener- oLy
getic proton events, J. Geophys. Res. 89:9683. Pl
65. Cane, H. V., McGuire, R. E., and von Rosenvinge, T. T. (1985) Two )
classes of energetic particle events associated with impulsive and long <~
duration soft x-ray flares, Astrophys. J. (in press). RO
66. BShme, A. (1972a) The time behavior of the continua during the initial stage %{ ]
of type IV bursts, Sol. Phys. 24:457. b }‘*
no%. 2 J°. LS Cke
67. Bohme, A. (1972b) Spectral behaviour and proton effects of the type IV broad Cah
band continua, Sol. Phys. 25:478.
68. Kahler, S. W., Cliver, E. W., Cane, H. V., McGuire, R. E., Stone, R. G., X34
and Sheeley, Jr., N. R. (1986) Solar filament eruptions and energetic i
particle events, Astrophys. J. (in press). VY,

53 bl

) ‘ ‘
S T T S T TR St 40 ¥ N TNy LAGAL LAY RN Y
“’-)"T-‘.'\"»‘t‘:‘l‘!.l Mt '! . n"..!':\ OO .t.l‘.'u ; n'..‘: . 1:, I.! WL HLRCET J“’ : 9, U M P4y XM | 5




L

-
-
.

-

AL

o)




o] gl
e S 1
W

-
A {

P x4,
Pa " s a. A

‘l
c::: ’ }
[) M

"’ —‘v‘“ d'.’ -
S - >
"
- -
.

A . S o , .
N A S . . -—es - Lo
2 Pal\ AP RN L e ) ) O X OO Tl X [ Tt W N ’

R A i LW N ! b 3 - b
- : 2RV AN Y :.]*‘i“. Tt I MY b ot . LR AR RS SN LY Y



